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Motivation: Comparing Measures and Spaces

• Probability distributions and histograms

→ images, vision, graphics, machine learning

• Optimal Transport
(Monge, 1781; Kantorovich, 1942; Koopmans, 1949; Dantzig, 1951; Brenier,
1991; Otto, 2001; Villani et al., 2009; Figalli et al., 2010)

→ takes into account metric d

(Illustration from slides of Gabriel Peyré) 2



Motivation: Approximate Distance for OT

The Sliced-Wasserstein (SW) distance shares similar topological properties
with the standard Wasserstein distance while having

better properties in terms of computational complexity

→ Wp(µm, νm) for discrete distributions µm and νm supported on m

points, the worst-case computational complexity scales as O(m3 logm)

→ SWp(µm, νm) leverages projections and fast 1d computations.

Powerful framework for ML problems:

• Generative modeling (Deshpande et al., 2018, 2019; Liutkus et al., 2019)
• Autoencoders (Kolouri et al., 2018)
• Bayesian computation (Nadjahi et al., 2020)
• Image processing (Bonneel et al., 2015).

Ref: Rabin et al. (2012); Bonnotte (2013); Bayraktar and Guo (2021); Nadjahi et al.
(2020)
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Sliced-Wasserstein (SW) Distance

For probability measures µ, ν ∈ Pp(Rd),

SWp
p(µ, ν,P) =

∫
Sd−1

Wp
p(θ

⋆
♯µ, θ

⋆
♯ ν) dP(θ)

P ∼ U(Sd−1) and integrand f
(p)
µ,ν : Sd−1 → R, f (p)

µ,ν(θ) = Wp
p(θ

⋆
♯µ, θ

⋆
♯ ν)

Let θ1, ..., θn
i.i.d.∼ P, the naive MC estimator averages the values (f (p)

µ,ν(θi))i.

Imc
n (f) :=

1

n

n∑
i=1

f (p)
µ,ν(θi)

Research Goal
Improve SW distance computation by improving the MC estimation using
Control Variates.

Ref: Rabin et al. (2012); Nguyen and Ho (2024); Nguyen et al. (2024); Glynn and
Szechtman (2002); Oates et al. (2017); Portier and Segers (2019); Leluc et al. (2021);
South et al. (2023)
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Monte Carlo with Control Variates

Integral I(f) of square-integrable integrand f ∈ L2(P) on (Θ,F ,P) is
approximated with θ1, . . . , θn ∼ P

I(f) =

∫
Θ

f(θ)dP(θ), In(f) =
1

n

n∑
i=1

f(θi).

Control Variates
Functions φ1, . . . , φs ∈ L2(P) such that: ∀1 ≤ j ≤ s, I[φj ] = 0.

Let φ = (φ1, . . . , φs)
⊤, for any β ∈ Rs, we have I[f−β⊤φ] = I[f ] leading

to the CV estimate of I(f), parameterized by β

CV-Monte Carlo

I(cv)n (f, β) =
1

n

n∑
i=1

(
f(Xi)− β⊤φ(Xi)

)
, θ1, . . . , θn ∼ P .

→ Optimal β⋆ ? Minimize the variance
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Linear Regression Framework

OLS framework: I(f) is the intercept of the LR model with features
φ1, . . . , φs and target response f ,

(I(f), β⋆(f)) ∈ argmin
(α,β)∈R×Rs

I[(f − α− β⊤φ)2].

Ordinary Least Squares Monte Carlo (OLSMC)

(Iolsn (f), βn(f)) ∈ argmin
(α,β)∈R×Rs

∥fn − α1n − Φβ∥22

fn = (f(θ1), . . . , f(θn))
⊤ ∈ Rn, 1n = (1, . . . , 1)⊤ ∈ Rn, Φ ∈ Rn×s is

matrix of control variates Φ = (φ(θi)
⊤)ni=1.

L2(P) projection of f onto Span{φ1, . . . , φs}. 6



Spherical Harmonics

Polynomial spaces

Let Pd
ℓ be the space of homogeneous polynomials of degree ℓ ≥ 0 on Rd,

i.e., Pd
ℓ = Span{xa1

1 · · ·xad

d | ak ∈ N,
∑d

k=1 ak = ℓ}. Let H d
ℓ ⊂ Pd

ℓ be
the space of harmonic polynomials: H d

ℓ = {Q ∈ Pd
ℓ | ∆Q = 0}.

Spherical Harmonics of degree ℓ ≥ 0

=
Restriction of elements in H d

ℓ to the sphere Sd−1

Many applications in:
• Physics (electromagnetic/gravitational fields, electron configurations)

• Computer Graphics (global illumination, radiance transfer)

• Machine Learning (spherical data representation)

Ref: Atkinson and Han (2012); Dai (2013); Ramamoorthi and Hanrahan (2001); Basri
and Jacobs (2003); Green (2003); Cohen et al. (2018); Dutordoir et al. (2020)
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Spherical Harmonics are Control Variates

The Spherical Harmonics {φℓ,k : ℓ ≥ 0, 1 ≤ k ≤ Nd
ℓ } form an orthonor-

mal basis of the Hilbert space L2(Sd−1). For every f ∈ L2(Sd−1),

f =

∞∑
ℓ=0

Nd
ℓ∑

k=1

f̂ℓ,kφℓ,k where f̂ℓ,k =

∫
fφℓ,k dP .

I(φℓ,k) =

∫
Sd−1

φℓ,k(θ) dP(θ) = 0

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4
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SHCV estimate

The SHCV estimate of maximum degree 2L is the OLSMC estimate with

all spherical harmonics of even degree from 2 up to 2L as covariate matrix

SHCVp
n,L(µ, ν) = Iolsn (f (p)

µ,ν)

(Linear rule) SHCV estimate can be represented as a linear rule w⊤fn,
where the weight vector w ∈ Rn does not depend on the integrands.

(Computing time) For K integrals, SHCV in O(Knωf + ω(Φ)) com-
pared to O(Knωf ) for MC and the additional cost ω(Φ) of fitting the
optimal control variates becomes negligible.
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Theoretical Properties

For Gaussians µ = N (a,A) and ν = N (b,B)

f (2)
µ,ν(θ) = |θ⊤(a− b)|2 +

(√
θ⊤Aθ −

√
θ⊤Bθ

)2
(Exact Rule) If f (p)

µ,ν is a polynomial of degree m, considering the SHCV

estimate and control variates φ = (φj)
sL,d

j=1 , if 2L ≥ m and n > sL,d then
SHCV is exact: SHCVp

n,L(µ, ν) = SWp
p(µ, ν).

(Affine transform) If µ, ν ∈ P2(Rd) are related by X ∼ µ and αX+b ∼
ν where α ∈ (0,∞) and b ∈ Rd then the SHCV estimate is exact.

(Mean invariance) For µ, ν ∈ P2(Rd), the error of the SHCV method
is (exactly) invariant under changes of the mean vectors mµ and mν of µ
and ν respectively.

10



Asymptotic Bound

Theorem (Convergence rate)

Let d ≥ 2, p ∈ [1,∞) and µ, ν ∈ Pp(Rd) be fixed. For any degree
sequence L = Ln such that L = o(n1/(2(d−1))) as n → ∞, the
integration error satisfies∣∣∣SHCVp

n,L(µ, ν)− SWp
p(µ, ν)

∣∣∣ = OP(L
−1n−1/2)

• For d = 3, with L = n1/(2(d−1))/ℓn where ℓn → ∞ slowly, this yields
the rate n−3/4+o(1) for the SHCV estimate, in comparison to the Monte
Carlo rate n−1/2.
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Numerical Experiments

Methods in Competition:

• MC: standard MC estimate.

• CVlow and CVup: the lower-CV and upper-CV estimates of Nguyen and
Ho (2024) based on lower and upper bounds of a Gaussian approximation.

• CVNN: estimate of Leluc et al. (2023) based on nearest neighbors esti-
mates acting as control variates.

• RQMC: (Randomized) Quasi Monte Carlo as in Nguyen et al. (2024).

• SHCV: proposed estimate with Spherical Harmonics as Control Variates.
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Numerical Experiments

(Gaussian) SW2
2(µm, νm) with µm = m−1 ∑m

i=1 δxi and νm = m−1 ∑m
j=1 δyj ,

xi ∼ µ = N (a,A), yj ∼ ν = N (b,B), m = 1000, means a, b ∼ Nd(1d, Id) and
covariance A = ΣaΣ

⊤
a and B = ΣbΣ

⊤
b , entries of Σa,Σb drawn from N (0, 1).
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MSE for sampled Gaussian on m = 1000 points, dimension d ∈ {3; 6} (left/right).
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Numerical Experiments

MSE and computing time (ms) for Gaussian distributions in dimension
d ∈ {5; 10; 20} based on n = 500 projections.

Method
d = 5 d = 10 d = 20

MSE Time MSE Time MSE Time

MC 1.45e-3 81.1± 3.5 9.45e-4 80.7± 4.4 1.47e-3 81.1± 1.8

CVlow 2.67e-4 79.7± 1.1 3.45e-4 80.1± 1.4 3.82e-4 80.0± 1.0

CVup 8.44e-4 83.0± 1.2 7.51e-4 83.0± 1.7 1.09e-3 83.1± 1.5

CVNN 4.29e-4 110 ± 2.2 1.12e-3 122 ± 1.6 2.14e-3 127 ± 1.4

QMC 2.91e-4 100 ± 1.2 2.37e-4 113 ± 1.4 6.60e-4 129 ± 1.4

RQMC 5.80e-5 96.3± 2.2 2.75e-4 113 ± 1.2 1.17e-3 130 ± 1.0

SHCV 2.68e-6 89.0± 6.3 1.93e-4 89.0± 4.5 2.95e-4 88.1± 2.8
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Numerical Experiments

(3D Point Clouds) dataset ShapeNetCore corresponding to the objects plane,
lamp, and bed, each composed of m = 2048 points in R3.
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Conclusion and perspectives

Take-home messages

• We have developed a novel method for reducing the variance of MC es-
timation of the SW distance using spherical harmonics as control variates.

• The excellent practical performance of the SHCV estimate against state-
of-the-art baselines is confirmed by theoretical properties and a conver-
gence rate in probability for the integration error.

Perspectives

• In statistical inference with parametric probability measures, note that
SHCV is compatible with the computation of gradient ∇ϕ SW

p
p(µ, νϕ) and

can be used for generalized SW flows (Kolouri et al., 2019).

• The proposed SHCV estimate focuses on the uniform distribution, it can
be extended to more general probability distributions by combining control
variates with importance sampling techniques as in Leluc et al. (2022).
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