SGD with Coordinate Sampling: Theory and Practice

Rémi LELUC

Ecole Polytechnique, Institut Polytechnique de Paris, France

Joint Work with François Portier, [paper](https://www.jmlr.org/papers/volume23/21-1240/21-1240.pdf) Published in Journal of Machine Learning Research, 2022.

Introduction

Underlying optimization problem

Let $f : \mathbb{R}^p \to \mathbb{R}$ be a general objective function.

• Goal: Solve

$$
\min_{\theta \in \mathbb{R}^p} \{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \}
$$

• Constraints: ∇f is hard to compute (large-scale problems) or even intractable (black-box) !

• Central question: Fast and Efficient procedures

Empirical Risk Minimization. data $z_1, \ldots, z_n \subset \mathcal{Z}$ and loss function $\ell : \mathbb{R}^p \times \mathcal{Z} \to \mathbb{R}$,

$$
\forall \theta \in \mathbb{R}^p, \quad f(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, z_i)
$$

The true gradient, $n^{-1}\sum_{i=1}^n \nabla \ell(\theta,z_i)$ requires n evaluations

Introduction

Noisy gradients

• Zeroth-Order (biased):

$$
g(\theta) = \sum_{k=1}^{p} h^{-1}(f(\theta + he_k) - f(\theta))e_k \underset{h \to 0}{\approx} \nabla f(\theta)
$$

• First-Order (unbiased):

$$
g_{t+1} := \nabla_{\theta} \ell(\theta_t, z_{\xi_{t+1}})
$$

where $\xi_{t+1} \sim \mathcal{U}(\llbracket 1,n \rrbracket)$ is uniformly distributed.

Stochastic Gradient Descent [\(Robbins and Monro, 1951\)](#page-28-0)

- Start $(t=0)$ from random point $\theta_0 \in \mathbb{R}^d$.
- Evaluate noisy gradient q_{t+1}
- Update iterate $\theta_{t+1} = \theta_t \gamma_{t+1} g_{t+1}$.

• (SCGD): Stochastic Coordinate Gradient Descent

$$
\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g_{t+1}^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}
$$

 ζ_{t+1} is a random variable valued in $\llbracket 1, p \rrbracket$.

- Reduction of the computing cost
- Covers all approaches that uses a gradient estimate g_{t+1}
- 2 sources of randomness: (i) noisy gradient q_{t+1} (ii) noisy coordinate ζ_{t+1}

• (SCGD): Stochastic Coordinate Gradient Descent

$$
\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g_{t+1}^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}
$$

- How to update the selecting policy ζ_{t+1} ? \rightarrow We develop an algorithm MUSKETEER to leverage the data structure and move along relevant directions.
- What condition on ζ_{t+1} for convergence ? \rightarrow We analyze the properties of SCGD algorithms (convergence of the iterates, convergence of the policy, non-asymptotic bound)
- CD using f or true gradient ∇f [\(Loshchilov et al., 2011;](#page-27-0) [Richtárik](#page-28-1) [and Takáč, 2013;](#page-28-1) [Glasmachers and Dogan, 2013;](#page-27-1) [Qu and Richtárik,](#page-28-2) [2016;](#page-28-2) [Allen-Zhu et al., 2016;](#page-27-2) [Namkoong et al., 2017\)](#page-28-3)
- Most related idea: Gauss-Southwell rule to select the largest gradient coordinate to move the iterate [\(Nutini et al., 2015\)](#page-28-4) \rightarrow Here: we have stochastic q_{t+1} and ζ_{t+1} .
- Sparsification methods [\(Alistarh et al., 2017;](#page-27-3) [Wangni et al., 2018\)](#page-29-0), unbiased importance sampling estimate of the gradient \rightarrow Here: no reweighting (biased) (conditioned gradient)

General framework and notation

• Only one coordinate ζ_{t+1} is selected:

$$
(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g_{t+1}
$$

with $D(k) = e_k e_k^T = Diag(0, \ldots, 0, 1, 0, \ldots, 0).$

• The distribution of ζ_{t+1} , is the **coordinate sampling policy** and is given by the probability weights vector $d_t = (d_t^{(1)}, \dots, d_t^{(p)})$

$$
d_t^{(k)} = \mathbb{P}(\zeta_{t+1} = k | \mathcal{F}_t), \quad k \in [\hspace{-0.65mm} [1, p] \hspace{-0.65mm}].
$$

• Not the same mean field as in usual SGD. Under conditional independence between q_{t+1} and ζ_{t+1} :

$$
\mathbb{E}[D(\zeta_{t+1})g_{t+1}|\mathcal{F}_t] = \text{diag}(d_t)g(\theta_t)
$$

General update rule

$$
\theta_{t+1} = \theta_t - \gamma_{t+1} h(\theta_t, \omega_{t+1})
$$

where h is a gradient generator and $(\omega_t)_{t>1}$ is a sequence of random variables

- (SGD) $h(\theta, \omega_{t+1}) = g_{t+1}$
- (SCGD) $h(\theta, \omega_{t+1}) = D(\zeta_{t+1})q_{t+1}$
- (Unbiased with importance weights as in [\(Wangni et al., 2018\)](#page-29-0)) $h(\theta, \omega_{t+1}) = D_t^{-1} D(\zeta_{t+1}) g_{t+1}$

MUSKETEER

MUltivariate Stochastic Knowledge **Extraction Through Exploration Exploitation** Reinforcement

Illustration/Motivation

MUSKETEER may be seen as an **adaptive bandit** problem with

 $'arms = coordinates'$

Alternate between 2 phases

• Exploration phase (one for all)

- \rightarrow fixed d_t , draw random coordinate and move along selected direction
- \rightarrow cumulative gains for the visited coordinates
- Exploitation phase (all for one)
- \rightarrow share knowledge of the cumulative gains
- \rightarrow update the coordinate sampling probability vector d_t

1) Pick a coordinate

Generate $\zeta_{t+1} \sim d_t$ and the coordinate gradient g_{t+1} 2) Update the iterate

$$
\theta_{t+1}^{(\zeta_{t+1})} = \theta_t^{(\zeta_{t+1})} - \gamma_{t+1} g_{t+1}^{(\zeta_{t+1})}
$$

3) Update cumulative gains

$$
G_{t+1}^{(\zeta_{t+1})} = G_t^{(\zeta_{t+1})} + g_{t+1}^{(\zeta_{t+1})} / d_t^{(\zeta_{t+1})}
$$

- \rightarrow (Variants with square) $|g_{t+1}^{(\zeta)}|$ or $g_{t+1}^{(\zeta)2}$
- \rightarrow Might be done T times with d_t fixed (before moving to the exploitation)
- This phase is to update the policy value of d_t
- EXP3 algorithm [\(Auer et al., 2002\)](#page-27-4) to update the probability weights through a mixture. Given $\eta > 0$ and $\lambda \in [0, 1]$, we have for all $k \in \llbracket 1, p \rrbracket$,

$$
d_{t+1}^{(k)} = (1 - \lambda) \frac{\exp(\eta | G_{t+1}^{(k)} | / t)}{\sum_{j=1}^{d} \exp(\eta | G_{t+1}^{(j)} | / t)} + \lambda \frac{1}{p}
$$

• The mixture with $\lambda > 0$ ensure to always give a chance to everyone

Algorithm input: (d_0, θ_0) , sequence $(\gamma_t)_{t>1}$ and parameter (η, λ)

- 1: for $t = 0, 1, 2, \ldots$ do
- 2: Set $d = d_t$ and sample coordinate $\zeta \sim d$ and gradient q
- 3: Update iterate: $\theta_{t+1}^{(\zeta)} = \theta_t^{(\zeta)} \gamma_{t+1} g^{(\zeta)}$
- 4: Update gain: $G_{t+1}^{(\zeta)} = G_{t}^{(\zeta)} + g^{(\zeta)}/d^{(\zeta)}$
- 5: Whenever $t = 0$ (mod T): update weights d_{t+1} with

$$
d_{t+1}^{(k)} = (1 - \lambda) \frac{\exp(\eta |G_t^{(k)}|/t)}{\sum_{j=1}^d \exp(\eta |G_t^{(j)}|/t)} + \lambda \frac{1}{p}
$$

6: end for

Numerical Experiments

• We apply ERM to regularized regression and classification problems.

 \bullet Given a data matrix $X \,=\, (x_{i,j}) \,\in\, \mathbb{R}^{n\times p}$ with labels $y \,\in\, \mathbb{R}^n$ and a regularization parameter $\mu > 0$, the Ridge regression is

$$
\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{2n} \sum_{i=1}^n (y_i - \sum_{j=1}^p x_{i,j} \theta_j)^2 + \frac{\mu}{2} ||\theta||_2^2
$$

and the ℓ_2 -regularized logistic regression is defined by

$$
\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \sum_{j=1}^p x_{i,j} \theta_j)) + \mu \|\theta\|_2^2
$$

where μ is set to the classical value $\mu = 1/n$

Special covariance structure $X[:, k] \sim \mathcal{N}(0, \sigma_k^2 I_n)$ with $\sigma_k^2 = k^{-\alpha}$ for $k \in [\![1, p]\!]$

Setting $\gamma_t = 1/t$, $n = 10,000$, $p = 250$, $T = \lfloor \sqrt{p} \rfloor = 15$

ZO Ridge Regression ($\alpha = 5$ and $\alpha = 10$)

ZO Logistic Regression ($\alpha = 2$ and $\alpha = 5$)

Numerical Experiments

• MNIST and Fashion-MNIST (ZO) $(p = 55,050 \text{ and } T = 234)$

Back ground

Stochastic Optimization

$$
\min_{\theta \in \mathbb{R}^p} \{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \}
$$

Gradients might be biased

There exists constant $c > 0$ such that

 $\forall h > 0, \theta \in \mathbb{R}^p$, $\|\mathbb{E}_{\xi}[g_h(\theta, \xi)] - \nabla f(\theta)\| \leq ch.$

- $h \geq 0$ is a parameter controlling the bias
- $c = 0$ recovers 1st-order gradient estimates
- Allows to cover general zeroth-order estimates

ZO gradient estimates

Example 1 (smoothing).

[\(Nesterov and Spokoiny, 2017\)](#page-28-5). The smoothed gradient estimate is

$$
\forall \theta \in \mathbb{R}^p, g_h(\theta, \xi) = h^{-1}[f(\theta + hU, \xi) - f(\theta, \xi)]U
$$

where $U \sim \mathcal{N}(0, I)$ (Alternative version with $U \sim Unif(\mathbb{S}))$

Example 2 (finite differences).

The finite differences gradient estimate is given by

$$
\forall \theta \in \mathbb{R}^p, g_h(\theta, \xi) = \sum_{k=1}^p g_h(\theta, \xi)^{(k)} e_k
$$

where for all $k = 1, \ldots, p$ the coordinates are

$$
g_h(\theta, \xi)^{(k)} = h^{-1}[f(\theta + he_k, \xi) - f(\theta, \xi)]
$$

General form

There exists probability measure ν satisfying $\int_{\mathbb{R}^p} xx^\top \nu(\mathrm{d} x) = I_p,$

$$
\forall h > 0, \theta \in \mathbb{R}^p, \quad \mathbb{E}_{\xi}[g_h(\theta, \xi)] = \int_{\mathbb{R}^p} x \left\{ \frac{f(\theta + hx) - f(\theta)}{h} \right\} \nu(\mathrm{d}x).
$$

Lemma

Under the previous assumption (if f is L -smooth) the biased gradient assumption is satisfies with

$$
c = (L/2) \sqrt{\int_{\mathbb{R}^p} ||x||_2^6 \nu(\mathrm{d}x)}
$$

- smoothing gradient is recovered when ν is the Gaussian measure
- Take $\nu = \sum_{k=1}^p \delta_{e_k}/p$ covers the finite differences estimate
- (MUSKETEER) Use a measure ν that evolves through time and put different weights on the different directions !

Assumption

Growth condition

There exist $0 \leq \mathcal{L}, \sigma^2 < \infty$

 $\forall h > 0, \theta \in \mathbb{R}^p \quad \mathbb{E} \left[\|g_h(\theta, \xi)\|_{\infty}^2 \right] \leq 2\mathcal{L} \left(f(\theta) - f^{\star}\right) + \sigma^2.$

Smoothness and lower bound

f is L-smooth and lower bounded by f^*

Two algorithms

Gradient generator $g_t = g_{h_{t+1}}(\theta_t, \xi_{t+1})$

 (SGD) $\theta_{t+1} = \theta_t - \gamma_{t+1} q_t$ $(SCGD)$ $\theta_{t+1} = \theta_t - \gamma_{t+1}D(\zeta_{t+1})q_t$

Theorem (Almost sure convergence of (biased) SGD) Under previous assumptions, $\nabla f(\theta_t) \rightarrow 0$ a.s. when $t \rightarrow \infty$.

Theorem (Almost sure convergence of particular SCGD)

Under previous assumptions

- (i) (max gradient) if $\zeta_{t+1} = \arg \max_{k=1,\ldots,n} |\partial_k f(\theta_t)|$ then $\nabla f(\theta_t) \to 0$ almost surely as $t \to +\infty$.
- (ii) (gradient weights) if $D_t \propto (|\nabla_k f(\theta_t)|^q)_{1\leq k\leq p}$ with $q>0$ then $\nabla f(\theta_t) \rightarrow 0$ almost surely as $t \rightarrow +\infty$.

• When f coercive and unique solution $\{\theta : \nabla f(\theta) = 0\} = \{\theta^*\}\$ then almost sure convergence towards minimizer $\theta_t \to \theta^\star.$

Theorem (Almost sure convergence general SCGD)

Under previous assumptions, if $\beta_{t+1} = \min_{1 \leq k \leq p} d_t^{(k)}$ is away from 0 then $\nabla f(\theta_t) \rightarrow 0$ almost surely as $t \rightarrow +\infty$.

Theorem (Almost sure convergence)

The sequence of iterates $(\theta_t)_{t\geq0}$ obtained by the MUSKETEER satisfies $\nabla f(\theta_t) \rightarrow 0$ almost surely as $t \rightarrow +\infty$.

Theorem (Weak convergence)

The MUSKETEER's coordinate policy $(d_t)_{t\in\mathbb{N}}$ converges weakly to the uniform distribution

Theorem (Non-asymptotic bounds, [\(Moulines and Bach, 2011\)](#page-28-6)) Let $(\theta_t)_{t\in\mathbb{N}}$ obtained by MUSKETEER with $\gamma_t = \gamma t^{-\alpha}$ then

$$
\mathbb{E}[f(\theta_t) - f^*] = O(1/t), \quad (\alpha = 1)
$$

Contributions

• (Theory) Almost-sure convergence SCGD towards stationary points, non-asymptotic bounds on the optimality gap $\mathbb{E}[f(\theta_t) - f^{\star}].$

• Conditions are relatively weak as f is only L -smooth (classical in non-convex problems) and the stochastic gradients are possibly biased with unbounded variance

• (Practice) New algorithm, called MUSKETEER: in the image of the motto 'all for one and one for all', this procedure belongs to the SCGD framework with a particular design for the coordinate sampling policy.

• MUSKETEER compares the value of all past gradient estimates g_t to select a descent direction (all for one) and then moves the current iterate according to the chosen direction (one for all).

Future work

Study the asymptotic behavior of other adaptive sampling strategies

[References](#page-27-5)

- Alistarh, D., D. Grubic, J. Li, R. Tomioka, and M. Vojnovic (2017). Qsgd: Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural Information Processing Systems, pp. 1709–1720.
- Allen-Zhu, Z., Z. Qu, P. Richtárik, and Y. Yuan (2016). Even faster accelerated coordinate descent using non-uniform sampling. In International Conference on Machine Learning, pp. 1110–1119.
- Auer, P., N. Cesa-Bianchi, and P. Fischer (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning 47(2-3), 235–256.
- Glasmachers, T. and U. Dogan (2013). Accelerated coordinate descent with adaptive coordinate frequencies. In Asian Conference on Machine Learning, pp. 72–86.
- Loshchilov, I., M. Schoenauer, and M. Sebag (2011). Adaptive coordinate descent. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp. 885–892.

Bibliography ii

- Moulines, E. and F. R. Bach (2011). Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pp. 451–459.
- Namkoong, H., A. Sinha, S. Yadlowsky, and J. C. Duchi (2017). Adaptive sampling probabilities for non-smooth optimization. In International Conference on Machine Learning, pp. 2574–2583.
- Nesterov, Y. and V. Spokoiny (2017). Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17(2), 527–566.
- Nutini, J., M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke (2015). Coordinate descent converges faster with the gauss-southwell rule than random selection. In International Conference on Machine Learning, pp. 1632–1641.
- Qu, Z. and P. Richtárik (2016). Coordinate descent with arbitrary sampling i: Algorithms and complexity. Optimization Methods and Software 31(5), 829–857.
- Richtárik, P. and M. Takáč (2013). On optimal probabilities in stochastic coordinate descent methods. arXiv preprint arXiv:1310.3438.
- Robbins, H. and S. Monro (1951). A stochastic approximation method. The annals of mathematical statistics, 400–407.

Wangni, J., J. Wang, J. Liu, and T. Zhang (2018). Gradient sparsification for communication-efficient distributed optimization. In Advances in Neural Information Processing Systems, pp. 1299–1309.