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Introduction

Underlying optimization problem
Let f : Rp → R be a general objective function.
• Goal: Solve

min
θ∈Rp

{f(θ) = Eξ[f(θ, ξ)]}

• Constraints: ∇f is hard to compute (large-scale problems) or even
intractable (black-box) !
• Central question: Fast and Efficient procedures

Empirical Risk Minimization. data z1, . . . , zn ⊂ Z and loss function
ℓ : Rp ×Z → R,

∀θ ∈ Rp, f(θ) =
1

n

n∑
i=1

ℓ(θ, zi)

The true gradient, n−1
∑n

i=1 ∇ℓ(θ, zi) requires n evaluations
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Introduction

Noisy gradients

• Zeroth-Order (biased):

g(θ) =

p∑
k=1

h−1(f(θ + hek)− f(θ))ek ≈
h→0

∇f(θ)

• First-Order (unbiased):

gt+1 := ∇θℓ(θt, zξt+1
)

where ξt+1 ∼ U(J1, nK) is uniformly distributed.

Stochastic Gradient Descent (Robbins and Monro, 1951)

• Start (t = 0) from random point θ0 ∈ Rd.

• Evaluate noisy gradient gt+1

• Update iterate θt+1 = θt − γt+1gt+1.
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Introduction

• (SCGD): Stochastic Coordinate Gradient Descent

{
θ
(k)
t+1 = θ

(k)
t if k ̸= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t+1 if k = ζt+1

ζt+1 is a random variable valued in J1, pK.

• Reduction of the computing cost

• Covers all approaches that uses a gradient estimate gt+1

• 2 sources of randomness:
(i) noisy gradient gt+1

(ii) noisy coordinate ζt+1
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Contributions

• (SCGD): Stochastic Coordinate Gradient Descent

{
θ
(k)
t+1 = θ

(k)
t if k ̸= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t+1 if k = ζt+1

• How to update the selecting policy ζt+1 ?
→ We develop an algorithm MUSKETEER to leverage the data
structure and move along relevant directions.

• What condition on ζt+1 for convergence ?
→ We analyze the properties of SCGD algorithms (convergence of
the iterates, convergence of the policy, non-asymptotic bound)
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Related work

• CD using f or true gradient ∇f (Loshchilov et al., 2011; Richtárik
and Takáč, 2013; Glasmachers and Dogan, 2013; Qu and Richtárik,
2016; Allen-Zhu et al., 2016; Namkoong et al., 2017)

• Most related idea: Gauss-Southwell rule to select the largest
gradient coordinate to move the iterate (Nutini et al., 2015)

→ Here: we have stochastic gt+1 and ζt+1.

• Sparsification methods (Alistarh et al., 2017; Wangni et al., 2018),
unbiased importance sampling estimate of the gradient

→ Here: no reweighting (biased) (conditioned gradient)
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General framework and notation

• Only one coordinate ζt+1 is selected:

(SCGD) θt+1 = θt − γt+1D(ζt+1)gt+1

with D(k) = eke
T
k = Diag(0, . . . , 0, 1, 0, . . . , 0).

• The distribution of ζt+1, is the coordinate sampling policy and is
given by the probability weights vector dt = (d

(1)
t , . . . , d

(p)
t )

d
(k)
t = P(ζt+1 = k|Ft), k ∈ J1, pK.

• Not the same mean field as in usual SGD. Under conditional
independence between gt+1 and ζt+1:

E[D(ζt+1)gt+1|Ft] = diag(dt)g(θt)
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General view: Unbiased and Adaptive policies

General update rule

θt+1 = θt − γt+1h(θt, ωt+1)

where h is a gradient generator and (ωt)t≥1 is a sequence of random
variables

• (SGD) h(θ, ωt+1) = gt+1

• (SCGD) h(θ, ωt+1) = D(ζt+1)gt+1

• (Unbiased with importance weights as in (Wangni et al., 2018))
h(θ, ωt+1) = D−1

t D(ζt+1)gt+1
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MUSKETEER

MUltivariate
Stochastic
Knowledge
Extraction
Through
Exploration
Exploitation
Reinforcement
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Illustration/Motivation
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MUSKETEER

MUSKETEER may be seen as an adaptive bandit problem with

′arms = coordinates′

Alternate between 2 phases

• Exploration phase (one for all)
→ fixed dt, draw random coordinate and move along selected direction
→ cumulative gains for the visited coordinates
• Exploitation phase (all for one)
→ share knowledge of the cumulative gains
→ update the coordinate sampling probability vector dt
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MUSKETEER: Exploration phase

1) Pick a coordinate
Generate ζt+1 ∼ dt and the coordinate gradient gt+1

2) Update the iterate

θ
(ζt+1)
t+1 = θ

(ζt+1)
t − γt+1g

(ζt+1)
t+1

3) Update cumulative gains

G
(ζt+1)
t+1 = G

(ζt+1)
t + g

(ζt+1)
t+1 /d

(ζt+1)
t

→ (Variants with square) |g(ζ)t+1| or g(ζ)2t+1

→ Might be done T times with dt fixed (before moving to the exploitation)
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MUSKETEER: Exploitation phase

• This phase is to update the policy value of dt

• EXP3 algorithm (Auer et al., 2002) to update the probability
weights through a mixture. Given η > 0 and λ ∈ [0, 1], we have for
all k ∈ J1, pK,

d
(k)
t+1 = (1− λ)

exp(η|G(k)
t+1|/t)∑d

j=1 exp(η|G
(j)
t+1|/t)

+ λ
1

p

• The mixture with λ > 0 ensure to always give a chance to everyone
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MUSKETEER complete algorithm

Algorithm input: (d0, θ0), sequence (γt)t≥1 and parameter (η, λ)

1: for t = 0, 1, 2, . . . do
2: Set d = dt and sample coordinate ζ ∼ d and gradient g
3: Update iterate: θ

(ζ)
t+1 = θ

(ζ)
t − γt+1g

(ζ)

4: Update gain: G
(ζ)
t+1 = G

(ζ)
t + g(ζ)/d(ζ)

5: Whenever t = 0 (mod T ): update weights dt+1 with

d
(k)
t+1 = (1− λ)

exp(η|G(k)
t |/t)∑d

j=1 exp(η|G
(j)
t |/t)

+ λ
1

p

6: end for
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Numerical Experiments

• We apply ERM to regularized regression and classification problems.
• Given a data matrix X = (xi,j) ∈ Rn×p with labels y ∈ Rn and a
regularization parameter µ > 0, the Ridge regression is

min
θ∈Rp

f(θ) =
1

2n

n∑
i=1

(yi −
p∑

j=1

xi,jθj)
2 +

µ

2
∥θ∥22

and the ℓ2-regularized logistic regression is defined by

min
θ∈Rp

f(θ) =
1

n

n∑
i=1

log(1 + exp(−yi

p∑
j=1

xi,jθj)) + µ∥θ∥22

where µ is set to the classical value µ = 1/n

Special covariance structure

X[:, k] ∼ N (0, σ2
kIn) with σ2

k = k−α for k ∈ J1, pK

Setting γt = 1/t, n = 10, 000, p = 250, T = ⌊√p⌋ = 15
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ZO Ridge Regression (α = 5 and α = 10)
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ZO Logistic Regression (α = 2 and α = 5)
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Numerical Experiments

• MNIST and Fashion-MNIST (ZO) (p = 55, 050 and T = 234)
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Back ground

Stochastic Optimization

min
θ∈Rp

{f(θ) = Eξ[f(θ, ξ)]}

Gradients might be biased
There exists constant c ≥ 0 such that

∀h > 0, θ ∈ Rp, ∥Eξ[gh(θ, ξ)]−∇f(θ)∥ ≤ ch.

• h ≥ 0 is a parameter controlling the bias

• c = 0 recovers 1st-order gradient estimates

• Allows to cover general zeroth-order estimates
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ZO gradient estimates

Example 1 (smoothing).

(Nesterov and Spokoiny, 2017). The smoothed gradient estimate is

∀θ ∈ Rp, gh(θ, ξ) = h−1[f(θ + hU, ξ)− f(θ, ξ)]U

where U ∼ N (0, I) (Alternative version with U ∼ Unif(S))

Example 2 (finite differences).

The finite differences gradient estimate is given by

∀θ ∈ Rp, gh(θ, ξ) =

p∑
k=1

gh(θ, ξ)
(k)ek

where for all k = 1, . . . , p the coordinates are

gh(θ, ξ)
(k) = h−1[f(θ + hek, ξ)− f(θ, ξ)]
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General form

There exists probability measure ν satisfying
∫
Rp xx

⊤ν(dx) = Ip,

∀h > 0, θ ∈ Rp, Eξ[gh(θ, ξ)] =

∫
Rp

x

{
f(θ + hx)− f(θ)

h

}
ν(dx).

Lemma
Under the previous assumption (if f is L-smooth) the biased gradient
assumption is satisfies with

c = (L/2)

√∫
Rp

∥x∥62ν(dx)

• smoothing gradient is recovered when ν is the Gaussian measure
• Take ν =

∑p
k=1 δek/p covers the finite differences estimate

• (MUSKETEER) Use a measure ν that evolves through time and put
different weights on the different directions !

21



Assumption

Growth condition

There exist 0 ≤ L, σ2 < ∞

∀h > 0, θ ∈ Rp E
[
∥gh(θ, ξ)∥2∞

]
≤ 2L (f(θ)− f⋆) + σ2.

Smoothness and lower bound
f is L-smooth and lower bounded by f⋆

Two algorithms

Gradient generator gt = ght+1
(θt, ξt+1)

(SGD) θt+1 = θt − γt+1gt

(SCGD) θt+1 = θt − γt+1D(ζt+1)gt
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Auxiliary result: SGD case

Robbins-Monro ∑
t≥1

γt = +∞ and
∑
t≥1

γ2
t < +∞

small bias

h2
t = O(γt)
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Main results

Theorem (Almost sure convergence of (biased) SGD)

Under previous assumptions, ∇f(θt) → 0 a.s. when t → ∞.

Theorem (Almost sure convergence of particular SCGD)

Under previous assumptions

(i) (max gradient) if ζt+1 = argmaxk=1,...,p |∂kf(θt)| then ∇f(θt) → 0

almost surely as t → +∞.

(ii) (gradient weights) if Dt ∝ (|∇kf(θt)|q)1≤k≤p with q > 0 then
∇f(θt) → 0 almost surely as t → +∞.

• When f coercive and unique solution {θ : ∇f(θ) = 0} = {θ⋆} then
almost sure convergence towards minimizer θt → θ⋆.

24



Main results: general SCGD

Theorem (Almost sure convergence general SCGD)

Under previous assumptions, if βt+1 = min1≤k≤p d
(k)
t is away from 0

then ∇f(θt) → 0 almost surely as t → +∞.
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Main results: MUSKETEER

Theorem (Almost sure convergence)

The sequence of iterates (θt)t≥0 obtained by the MUSKETEER satisfies
∇f(θt) → 0 almost surely as t → +∞.

Theorem (Weak convergence)

The MUSKETEER’s coordinate policy (dt)t∈N converges weakly to the
uniform distribution

Theorem (Non-asymptotic bounds, (Moulines and Bach, 2011))

Let (θt)t∈N obtained by MUSKETEER with γt = γt−α then

E [f(θt)− f⋆] = O(1/t), (α = 1)
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Conclusion Future work

Contributions
• (Theory) Almost-sure convergence SCGD towards stationary points,
non-asymptotic bounds on the optimality gap E[f(θt)− f⋆].
• Conditions are relatively weak as f is only L-smooth (classical in
non-convex problems) and the stochastic gradients are possibly biased
with unbounded variance.

• (Practice) New algorithm, called MUSKETEER: in the image of the
motto ’all for one and one for all’, this procedure belongs to the SCGD
framework with a particular design for the coordinate sampling policy.
• MUSKETEER compares the value of all past gradient estimates gt to
select a descent direction (all for one) and then moves the current iterate
according to the chosen direction (one for all).

Future work
Study the asymptotic behavior of other adaptive sampling strategies
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