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Motivations

• Random vector X = (X1, . . . , Xp) ∈ Rp
+, p ≥ 1 with Pareto margins.

e.g. spatial fields, asset prices, in risk management: sensor networks
(road/internet traffic) or financial assets
• Extreme regions {x ∈ Rp, ∥x∥ > t}, t ≫ 0.

e.g. traffic jam, flood, network congestion, falling price
• Our interest lies in the extreme dependence: Identifying the features
Xj ’s contributing to X being extreme → feature clustering.
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Goal: Identify Clusters of Features
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Goal
Identify clusters of features K ⊂ J1, pK such that the variables
{Xj : j ∈ K} may be large while the other variables Xj for j /∈ K

simultaneously remain small.

Assume that Ki ∩Kj = ∅ for i ̸= j (e.g. smart grids, portfolio
diversity,...), |Ki| > 1 for i ≤ m.
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Our Intuition

Search a subset K of features such that the ℓ1-norms of X and its restric-
tion X(K) are almost equal i.e.

∥X∥1 ≈ ∥X(K)∥1.

Example: p = 7 and K = {3, 4, 5}

X = (∗, ∗, ∗, ∗, ∗, ∗, ∗), ∥X∥1 = 3∗+ 3∗
X(K) = (0, 0, ∗, ∗, ∗, 0, 0), ∥X(K)∥1 = 3∗
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Related work

• Analysis of the (Sparse) Dependence Structure
Chautru (2015); Chiapino and Sabourin (2016); Goix et al. (2016); Engelke
and Hitz (2018); Chiapino et al. (2019)

• Dimension reduction techniques (PCA and derivatives)
(Wold et al., 1987; Cutler and Breiman, 1994; Tipping and Bishop, 1999;
Cooley and Thibaud, 2019; Drees and Sabourin, 2019)

• Sparse support of multivariate extremes
(De Haan and Ferreira, 2007; Chiapino and Sabourin, 2016; Meyer and
Wintenberger, 2019; Engelke and Ivanovs, 2020)

5



Our Contributions

Problem
How to jointly find the extremes’ structure dependence ?

• Optimization approach to perform subspace clustering of extreme re-
gions: Empirical Risk Minimization (ERM) on the probability simplex with
a non-asymptotic bound.

• Algorithm: find a sparse representation for the structure dependence.
Multivariate EXtreme Informative Clustering by Optimization

• Numerical Experiments on both feature clustering and anomaly detec-
tion tasks in extreme regions.
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Multivariate Regular Variation

X = (X1, . . . , Xp) with continuous marginal cdf’s F 1, . . . , F p

Definition: Multivariate regular variation (Resnick (1987))

For subsets of Rp
+ \ {0} bounded away from origin:

t{t−1X ∈ ·} −−−→
t→∞

µ(·),

The limit measure µ on Rd
+ \ {0} is homogeneous:

∀λ > 0, µ(λA) = λ−1µ(A)

with 0 ̸∈ A, µ(∂A) = 0.
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From Exponent Measure to Angular Measure

Angular measure Φ and directions of extremes

Φ is defined on S = {x ∈ Rd
+, ||x||∞ = 1},

Φ(B) = µ({x ∈ Rd
+, ||x||∞ ≥ 1,Θ(x) ∈ B})

with Θ(x) = x/||x||∞.
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Angular Measure and Feature Clustering

The angular measure Φ characterizes the directions where extremes are
more likely to occur.

• The support of Φ → features that are more likely to jointly be large.

• We address the problem of finding different feature clusters Kj ⊂ J1, pK
with j = 1, . . . ,m and m < p such that all features in a same subset may
be large together.

• Relying on the m clusters of features K1, . . . ,Km, Φ can be approxi-
mated as

Φ(·) ≈
m∑
j=1

ΦKj
(·).

Each component ΦKj
is concentrated on the subregion given by the fea-

tures of cluster Kj .
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Empirical Risk Minimization (ERM)

• Observed i.i.d. copies z1, . . . , zn ∈ Z of random variable z

• Loss function ℓ : G × Z → R
• Goal is to minimize the unknown true risk R(g) = Ez[ℓ(g, z)]

• Empirical counterpart, for all g ∈ G,

R(g) = Ez[ℓ(g, z)] R̂n(g) =
1

n

n∑
i=1

ℓ(g, zi).

Examples: z = (x, y) with data x ∈ X ⊂ Rp and label y ∈ Y.
• (L2 Regression) Y = R, ℓ(g, (x, y)) = (y − g(x))2

• (Classification) Y = {−1,+1}, ℓ(g, (x, y)) = 1{g(x) ̸= y}
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ERM in Extreme Regions

• n ≥ 1 i.i.d copies X1, . . . , Xn of X (Pareto margins)
• Loss function ℓ : Rp

+ × R+ → R+ measuring the discrepancy between
the true extreme dependence structure of X and its prediction g (X).
• Find g to minimize the risk at level tγ

Rtγ (g) = EX

[
ℓ (X, g (X))

∣∣∣∥X∥∞ > tγ

]
,

• Based on the extreme observations X(1), . . . , X(k), the empirical risk is

R̂k(g) =
1

k

k∑
i=1

ℓ
(
X(i), g(X(i))

)
,

where ∥X(1)∥ ≥ . . . ≥ ∥X(k)∥ ≥ . . . ≥ ∥X(n)∥.
• Denote X ∈ Rk×p

+ the data matrix of extreme observations.
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Representation g(X) and Loss function ℓ

• Approximate ∥X∥1 with mixtures of components of X

• Consider the probability simplex ∆p = {x ∈ Rp
+, x1 + . . .+xp = 1} and

let W ∈ Am
p with m < p be a mixture matrix (columns belonging to ∆p).

• Each column Wj for j ∈ J1,mK is modelling a mixture of components
and represents a cluster Kj .

ℓ(X,W ) = ∥X∥1 − ∨m
j=1XW j

Example: p = 7,K1 = {1, 2},K2 = {3, 4, 5},K3 = {6, 7}

X =


∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

 , W =



1/2 0 0

1/2 0 0

0 0 1/3

0 0 1/3

0 0 1/3

0 1/2 0

0 1/2 0
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(Non-Convex) Optimization Problem

• For each row Xi, seek a column j ∈ J1,mK for which X̃j = (XiW)j is
the closest to ∥Xi∥1.

• Column index of a good mixture through the mapping

φ : J1, kK → J1,mK, φ(i) = argmax
1≤j≤m

X̃j
(i)

• Learn the mixture matrix Ŵk such that

Ŵk ∈ argmax
W∈Am

p

{
1

k

k∑
i=1

(XW)
φ(i)
i =

1

k

k∑
i=1

ei(XW)eφ(i)

}
.

Warning computationally intractable (all combinations)

→ Relaxed version of the problem !
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Relaxed Version and Regularization

(Ŵk, Ẑk) ∈ argmax
(W,Z)∈Am

p ×Ak
m

f(W,Z) =
1

k

k∑
i=1

XiWZi = Tr(XWZ)/k.

• Constraint of disjoint clusters by forcing the columns of the mixture
matrix W to be orthogonal, i.e., for all i < j, ⟨W i,W j⟩ = 0.
• Penalized version of the objective function with a regularization param-
eter λ > 0:

fλ(W,Z) = Tr(XWZ)/k − λ
∑
i<j

⟨W i,W j⟩

with partial derivatives given by{
∇Zfλ(W,Z) = (XW)T /k

∇Wfλ(W,Z) = (ZX)T /k − λW̃, W̃ j =
∑

i<j W
i.
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Projection onto Simplex

• Recover clusters that are not unit sets → avoid the vertices.
• Projection step ΠS(·) of each column of W onto a convex set S.
• x̄ = (1/p, . . . , 1/p) the barycenter of the probability simplex ∆p.
• To escape from the curse of dimensionality, we introduce the convex
set where we cut off the vertices using a threshold τ of the distance L =

∥x̄− ej∥2 =
√
(p− 1)/p between the barycenter and a vertex.

Sτ
p =

{
x ∈ ∆p| max

1≤j≤p
⟨x− x̄, ej − x̄⟩ ≤ τ∥ej − x̄∥2

}
.

Define the radius rp∞(τ) = 1− (1− τ)(p− 1)/p then

Sτ
p = ∆p ∩B∞,p (x̄, τL) = ∆p ∩B∞,p (0, r

p
∞(τ)) .
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Region of interest: the M-set

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

x
τ

Simplex of R3 with our region of interest.
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Bounding the Excess Risk

Non-asymptotic bound

Consider the risk Rtγ , k = ⌊nγ⌋ and denote by Wmex the mixture
matrix obtained by MEXICO. Then for δ ∈ (0, 1), n ≥ 1 and τ ≤ 1 we
have with probability at least 1− δ,

Rtγ (Wmex)−Rtγ (W
⋆
tγ ) ≤

1√
k
C(γ, δ) +

1

k
C ′(γ, δ) + C

′′
(τ).

• Convergence rate of order OP(1/
√
k) where k is the actual size of the

dataset required to estimate the support of extreme.

17



Numerical Experiments: Anomaly Detection

Anomaly Detection

Predict if a new extreme sample Xnew ∈ Rp
+ is an anomaly, using the

value of the loss function ℓ(Xnew,Wmex) as an anomaly score.

e1

e2

e3

• small loss → Xnew behavior is rather normal

• large loss → Xnew more likely to be an anomaly.
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Numerical Experiments: Feature Clustering

Feature Clustering

A new extreme sample Xnew ∈ Rp
+ is to be analyzed.

e1

e2

e3

• Since Xnew is extreme → predict the features that are large simultane-
ously based on the clusters given by MEXICO.

• Compute the transformed sample X̃new = XnewWmex and assign the
predicted cluster of features by Pred(Xnew) = argmax1≤j≤m X̃j

new.
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Numerical Experiments: Details

Feature Clustering

Since MEXICO is an inductive clustering method, compare with spectral
clustering Ding et al. (2005) and spherical K-means Janßen et al. (2020).
• Simulated data from an (asymmetric) logistic distribution.
• Parameter setting: dimension p ∈ {75, 100, 150, 200}, number of train
samples ntrain = 1000 and test samples ntest = 100.

Anomaly Detection

Comparison of three algorithms for anomaly detection in extreme regions:
Isolation Forest (Liu et al., 2008), DAMEX (Goix et al., 2017) and our
method MEXICO.

• Five reference AD datasets are studied: shuttle, forestcover, http, SF
and SA.
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Conclusion

• Optimization framework (ERM) for clustering features in extreme regions

• Our approach does not scan all the multiple possible subsets and out-
performs existing algorithms

• Future work will focus on the statistical properties of the developed
algorithm by further exploring links with kernel methods
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