Feature Clustering for Support Identification in Extreme Regions

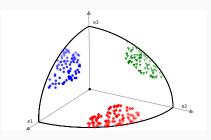
Rémi LELUC

Ecole Polytechnique, Institut Polytechnique de Paris, France

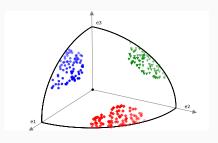
Joint work with Hamid Jalalzai, paper Published in *International Conference on Machine Learning*, 2021.

Motivations

- Random vector $X=(X^1,\ldots,X^p)\in\mathbb{R}^p_+$, $p\geq 1$ with Pareto margins. e.g. spatial fields, asset prices, in risk management: sensor networks (road/internet traffic) or financial assets
- Extreme regions $\{x\in\mathbb{R}^p,\|x\|>t\}$, $t\gg 0$. e.g. traffic jam, flood, network congestion, falling price
- ullet Our interest lies in the extreme dependence: Identifying the features X^j 's contributing to X being extreme o feature clustering.



Goal: Identify Clusters of Features



Goal

Identify clusters of features $K \subset [\![1,p]\!]$ such that the variables $\{X^j: j \in K\}$ may be large while the other variables X^j for $j \notin K$ simultaneously remain small.

Assume that $K_i \cap K_j = \emptyset$ for $i \neq j$ (e.g. smart grids, portfolio diversity,...), $|K_i| > 1$ for $i \leq m$.

3

Our Intuition

Search a subset K of features such that the ℓ_1 -norms of X and its restriction $X^{(K)}$ are almost equal i.e.

$$||X||_1 \approx ||X^{(K)}||_1.$$

Example:
$$p=7$$
 and $K=\{3,4,5\}$
$$X=(*,*,*,*,*,*),\quad \|X\|_1=3*+3*$$

$$X^{(K)}=(0,0,*,*,*,0,0),\quad \|X^{(K)}\|_1=3*$$

4

Related work

- Analysis of the (Sparse) Dependence Structure Chautru (2015); Chiapino and Sabourin (2016); Goix et al. (2016); Engelke and Hitz (2018); Chiapino et al. (2019)
- Dimension reduction techniques (PCA and derivatives) (Wold et al., 1987; Cutler and Breiman, 1994; Tipping and Bishop, 1999; Cooley and Thibaud, 2019; Drees and Sabourin, 2019)
- Sparse support of multivariate extremes (De Haan and Ferreira, 2007; Chiapino and Sabourin, 2016; Meyer and Wintenberger, 2019; Engelke and Ivanovs, 2020)

Our Contributions

Problem

How to jointly find the extremes' structure dependence ?

- **Optimization** approach to perform subspace clustering of extreme regions: Empirical Risk Minimization (ERM) on the probability simplex with a non-asymptotic bound.
- Algorithm: find a sparse representation for the structure dependence.
 Multivariate EXtreme Informative Clustering by Optimization
- Numerical Experiments on both feature clustering and anomaly detection tasks in extreme regions.

Multivariate Regular Variation

 $X=(X^1,\dots,X^p)$ with continuous marginal cdf's F^1,\dots,F^p

Definition: Multivariate regular variation (Resnick (1987))

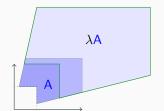
For subsets of $\mathbb{R}^p_+ \setminus \{0\}$ bounded away from origin:

$$t\{t^{-1}X \in \cdot\} \xrightarrow[t \to \infty]{} \mu(\cdot),$$

The limit measure μ on $\mathbb{R}^d_+ \setminus \{0\}$ is **homogeneous**:

$$\forall \lambda > 0, \qquad \mu(\lambda \mathbf{A}) = \lambda^{-1} \mu(\mathbf{A})$$

with $0 \notin A$, $\mu(\partial A) = 0$.



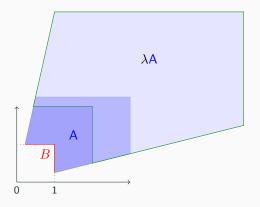
From Exponent Measure to Angular Measure

Angular measure Φ and directions of extremes

 Φ is defined on $S = \{x \in \mathbb{R}^d_+, ||x||_{\infty} = 1\}$,

$$\Phi(\mathbf{B}) = \mu(\{x \in \mathbb{R}^d_+, ||x||_{\infty} \ge 1, \Theta(x) \in \mathbf{B}\})$$

with $\Theta(x) = x/||x||_{\infty}$.



Angular Measure and Feature Clustering

The angular measure Φ characterizes the directions where extremes are more likely to occur.

- ullet The support of Φo features that are more likely to jointly be large.
- ullet We address the problem of finding different feature clusters $K_j \subset [\![1,p]\!]$ with $j=1,\ldots,m$ and m< p such that all features in a same subset may be large together.
- Relying on the m clusters of features K_1, \ldots, K_m , Φ can be approximated as

$$\Phi(\cdot) \approx \sum_{j=1}^{m} \Phi_{\mathbf{K}_{j}}(\cdot).$$

Each component Φ_{K_j} is concentrated on the subregion given by the features of cluster K_i .

Empirical Risk Minimization (ERM)

- Observed *i.i.d.* copies $z_1, \ldots, z_n \in \mathcal{Z}$ of random variable z
- Loss function $\ell: \mathcal{G} \times \mathcal{Z} \to \mathbb{R}$
- ullet Goal is to minimize the *unknown* true risk $\mathcal{R}(g) = \mathbb{E}_z[\ell(g,z)]$
- Empirical counterpart, for all $g \in \mathcal{G}$,

$$\mathcal{R}(g) = \mathbb{E}_z[\ell(g,z)]$$
 $\widehat{\mathcal{R}}_n(g) = \frac{1}{n} \sum_{i=1}^n \ell(g,z_i).$

Examples: z = (x, y) with data $x \in \mathcal{X} \subset \mathbb{R}^p$ and label $y \in \mathcal{Y}$.

- (L_2 Regression) $\mathcal{Y} = \mathbb{R}$, $\ell(g,(x,y)) = (y-g(x))^2$
- (Classification) $\mathcal{Y} = \{-1, +1\}, \qquad \ell(g, (x, y)) = \mathbb{1}\{g(x) \neq y\}$

ERM in Extreme Regions

- $n \ge 1$ i.i.d copies X_1, \ldots, X_n of X (Pareto margins)
- Loss function $\ell: \mathbb{R}_+^p \times \mathbb{R}_+ \to \mathbb{R}_+$ measuring the discrepancy between the true extreme dependence structure of X and its prediction g(X).
- ullet Find g to minimize the risk at level t_γ

$$\mathcal{R}_{t_{\gamma}}(g) = \mathbb{E}_{X} \left[\ell \left(X, g \left(X \right) \right) \middle| \|X\|_{\infty} > t_{\gamma} \right],$$

ullet Based on the extreme observations $X_{(1)},\dots,X_{(k)}$, the empirical risk is

$$\widehat{\mathcal{R}}_k(g) = \frac{1}{k} \sum_{i=1}^k \ell(X_{(i)}, g(X_{(i)})),$$

where $||X_{(1)}|| \ge ... \ge ||X_{(k)}|| \ge ... \ge ||X_{(n)}||$.

ullet Denote $\mathbf{X} \in \mathbb{R}_+^{k imes p}$ the data matrix of extreme observations.

Representation g(X) and Loss function ℓ

- ullet Approximate $\|X\|_1$ with mixtures of components of X
- Consider the probability simplex $\Delta_p = \{x \in \mathbb{R}^p_+, x_1 + \ldots + x_p = 1\}$ and let $\mathbf{W} \in \mathcal{A}^m_p$ with m < p be a mixture matrix (columns belonging to Δ_p).
- ullet Each column ${f W}^j$ for $j\in [\![1,m]\!]$ is modelling a mixture of components and represents a cluster K_j .

$$\ell(X, W) = ||X||_1 - \vee_{j=1}^m X W^j$$

Example:
$$p = 7$$
, $K_1 = \{1, 2\}$, $K_2 = \{3, 4, 5\}$, $K_3 = \{6, 7\}$

(Non-Convex) Optimization Problem

- For each row X_i , seek a column $j \in [1, m]$ for which $\widetilde{X}^j = (X_i \mathbf{W})^j$ is the closest to $||X_i||_1$.
- Column index of a good mixture through the mapping

$$\varphi: [\![1,k]\!] \to [\![1,m]\!], \quad \varphi(i) = \mathop{\arg\max}_{1 \leq j \leq m} \widetilde{X}^j_{(i)}$$

ullet Learn the mixture matrix $\widehat{\mathbf{W}}_k$ such that

$$\widehat{\mathbf{W}}_k \in \operatorname*{arg\,max}_{\mathbf{W} \in \mathcal{A}_p^m} \left\{ \frac{1}{k} \sum_{i=1}^k (\mathbf{X} \mathbf{W})_i^{\varphi(i)} = \frac{1}{k} \sum_{i=1}^k e_i(\mathbf{X} \mathbf{W}) e^{\varphi(i)} \right\}.$$

Warning computationally intractable (all combinations)

 \rightarrow Relaxed version of the problem !

Relaxed Version and Regularization

$$(\widehat{\mathbf{W}}_k, \widehat{\mathbf{Z}}_k) \in \underset{(\mathbf{W}, \mathbf{Z}) \in \mathcal{A}_p^m \times \mathcal{A}_m^k}{\arg \max} f(\mathbf{W}, \mathbf{Z}) = \frac{1}{k} \sum_{i=1}^k \mathbf{X}_i \mathbf{W} \mathbf{Z}^i = Tr(\mathbf{X} \mathbf{W} \mathbf{Z}) / k.$$

- Constraint of disjoint clusters by forcing the columns of the mixture matrix \mathbf{W} to be orthogonal, *i.e.*, for all $i < j, \langle W^i, W^j \rangle = 0$.
- \bullet Penalized version of the objective function with a regularization parameter $\lambda>0$:

$$f_{\lambda}(\mathbf{W}, \mathbf{Z}) = Tr(\mathbf{X}\mathbf{W}\mathbf{Z})/k - \lambda \sum_{i < j} \langle W^{i}, W^{j} \rangle$$

with partial derivatives given by

$$\begin{cases} \nabla_{\mathbf{Z}} f_{\lambda}(\mathbf{W}, \mathbf{Z}) &= (\mathbf{X}\mathbf{W})^{T} / k \\ \nabla_{\mathbf{W}} f_{\lambda}(\mathbf{W}, \mathbf{Z}) &= (\mathbf{Z}\mathbf{X})^{T} / k - \lambda \widetilde{\mathbf{W}}, \qquad \widetilde{W}^{j} = \sum_{i < j} W^{i}. \end{cases}$$

Projection onto Simplex

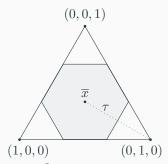
- ullet Recover clusters that are not unit sets o avoid the vertices.
- Projection step $\Pi_{\mathcal{S}}(\cdot)$ of each column of **W** onto a convex set \mathcal{S} .
- $\bar{x} = (1/p, \dots, 1/p)$ the barycenter of the probability simplex Δ_p .
- ullet To escape from the curse of dimensionality, we introduce the convex set where we cut off the vertices using a threshold au of the distance $L=\|\bar x-e_j\|_2=\sqrt{(p-1)/p}$ between the barycenter and a vertex.

$$\mathcal{S}_p^{\tau} = \left\{ x \in \Delta_p | \max_{1 \le j \le p} \langle x - \bar{x}, e_j - \bar{x} \rangle \le \tau ||e_j - \bar{x}||_2 \right\}.$$

Define the radius $r_{\infty}^{p}(\tau)=1-(1-\tau)(p-1)/p$ then

$$\mathcal{S}_{p}^{\tau} = \Delta_{p} \cap B_{\infty,p}\left(\bar{x}, \tau L\right) = \Delta_{p} \cap B_{\infty,p}\left(0, r_{\infty}^{p}(\tau)\right).$$

Region of interest: the M-set



Simplex of $\ensuremath{\mathbb{R}}^3$ with our region of interest.

Bounding the Excess Risk

Non-asymptotic bound

Consider the risk $\mathcal{R}_{t_{\gamma}}, k = \lfloor n\gamma \rfloor$ and denote by \mathbf{W}_{mex} the mixture matrix obtained by MEXICO. Then for $\delta \in (0,1)$, $n \geq 1$ and $\tau \leq 1$ we have with probability at least $1-\delta$,

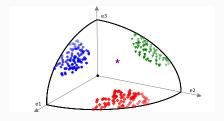
$$\mathcal{R}_{t_{\gamma}}(\mathbf{W}_{mex}) - \mathcal{R}_{t_{\gamma}}(\mathbf{W}_{t_{\gamma}}^{\star}) \leq \frac{1}{\sqrt{k}} C(\gamma, \delta) \ + \frac{1}{k} C'(\gamma, \delta) + C^{''}(\tau).$$

• Convergence rate of order $O_{\mathbb{P}}(1/\sqrt{k})$ where k is the actual size of the dataset required to estimate the support of extreme.

Numerical Experiments: Anomaly Detection

Anomaly Detection

Predict if a new extreme sample $X_{\text{new}} \in \mathbb{R}^p_+$ is an anomaly, using the value of the loss function $\ell(X_{\text{new}}, \mathbf{W}_{\text{mex}})$ as an anomaly score.

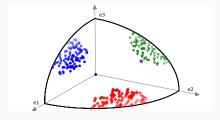


- ullet small loss $o X_{\sf new}$ behavior is rather *normal*
- large loss $\to X_{\text{new}}$ more likely to be an *anomaly*.

Numerical Experiments: Feature Clustering

Feature Clustering

A new extreme sample $X_{\text{new}} \in \mathbb{R}^p_+$ is to be analyzed.



- ullet Since $X_{\sf new}$ is extreme \to predict the features that are large simultaneously based on the clusters given by MEXICO.
- ullet Compute the transformed sample $\widetilde{X}_{\mathsf{new}} = X_{\mathsf{new}} \mathbf{W}_{mex}$ and assign the predicted cluster of features by $\mathsf{Pred}(X_{\mathsf{new}}) = \arg\max_{1 \leq j \leq m} \widetilde{X}_{\mathsf{new}}^j$.

Numerical Experiments: Details

Feature Clustering

Since MEXICO is an inductive clustering method, compare with spectral clustering Ding et al. (2005) and spherical K-means Janßen et al. (2020).

- Simulated data from an (asymmetric) logistic distribution.
- ullet Parameter setting: dimension $p \in \{75, 100, 150, 200\}$, number of train samples $n_{\mathrm{train}} = 1000$ and test samples $n_{\mathrm{test}} = 100$.

Anomaly Detection

Comparison of three algorithms for anomaly detection in extreme regions: Isolation Forest (Liu et al., 2008), DAMEX (Goix et al., 2017) and our method MEXICO.

• Five reference AD datasets are studied: shuttle, forestcover, http, SF and SA.

Conclusion

- Optimization framework (ERM) for clustering features in extreme regions
- Our approach does not scan all the multiple possible subsets and outperforms existing algorithms
- Future work will focus on the statistical properties of the developed algorithm by further exploring links with kernel methods

References

- Chautru, E. (2015). Dimension reduction in multivariate extreme value analysis. *Electronic journal of statistics* 9(1), 383–418.
- Chiapino, M. and A. Sabourin (2016). Feature clustering for extreme events analysis, with application to extreme stream-flow data. In *International Workshop on New Frontiers in Mining Complex Patterns*, pp. 132–147. Springer.
- Chiapino, M., A. Sabourin, and J. Segers (2019). Identifying groups of variables with the potential of being large simultaneously. *Extremes* 22(2), 193–222.
- Cooley, D. and E. Thibaud (2019). Decompositions of dependence for high-dimensional extremes. *Biometrika* 106(3), 587–604.
- Cutler, A. and L. Breiman (1994). Archetypal analysis. Technometrics 36(4), 338–347.
- De Haan, L. and A. Ferreira (2007). Extreme value theory: an introduction. Springer Science & Business Media.

Bibliography ii

- Ding, C., X. He, and H. D. Simon (2005). On the equivalence of nonnegative matrix factorization and spectral clustering. In *Proceedings of the 2005 SIAM international* conference on data mining, pp. 606–610. SIAM.
- Drees, H. and A. Sabourin (2019). Principal component analysis for multivariate extremes. arXiv preprint arXiv:1906.11043.
- Engelke, S. and A. S. Hitz (2018). Graphical models for extremes. arXiv preprint arXiv:1812.01734.
- Engelke, S. and J. Ivanovs (2020). Sparse structures for multivariate extremes. *arXiv* preprint arXiv:2004.12182.
- Goix, N., A. Sabourin, and S. Clémençon (2016). Sparse representation of multivariate extremes with applications to anomaly ranking. In *Artificial Intelligence and Statistics*, pp. 75–83.
- Goix, N., A. Sabourin, and S. Clémençon (2017). Sparse representation of multivariate extremes with applications to anomaly detection. *Journal of Multivariate Analysis* 161, 12–31.
- Janßen, A., P. Wan, et al. (2020). k-means clustering of extremes. *Electronic Journal of Statistics* 14(1), 1211–1233.

Bibliography iii

- Liu, F. T., K. M. Ting, and Z.-H. Zhou (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE.
- Meyer, N. and O. Wintenberger (2019). Sparse regular variation. arXiv preprint arXiv:1907.00686.
- Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer Series in Operations Research and Financial Engineering.
- Tipping, M. E. and C. M. Bishop (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622.
- Wold, S., K. Esbensen, and P. Geladi (1987). Principal component analysis. Chemometrics and intelligent laboratory systems 2(1-3), 37–52.