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Motivation: Machine Learning recent advances

AlphaGo (2016) AlphaFold (2018) GPT-3/4(2020/2023)

Machine Learning goal
Learn (integrate/optimize) a prediction function
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Motivation: need for integral and gradient estimators

Central Question 1: Integration

Computation of an integral through probabilistic objective F

F(θ) = Eπθ(x)[f (x)] =

∫
X
f (x)πθ(x)dx . (1)

Cost function f and input distribution πθ(·)

Central Question 2: Optimization

Learn the optimal parameter θ? ∈ arg minθ F(θ) with the gradient

G = ∇θF(θ) = ∇θ Eπθ(x)[f (x)]. (2)

Main issue: intractability and computational cost
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Motivation: Key example

Reinforcement Learning1.

Trajectory τ = (s0, a0, . . . , sT−1, aT−1) with policy πθ
and cumulative return R(τ) =

∑T−1
t=0 γtr(st , at).

Objective F is an expectation

F(θ) = Eπθ(τ)[R(τ)]

Optimal strategy πθ? with θ? ∈ arg maxF(θ) (2016) AlphaGo A.I. beats

champion Lee Sedol in Go.

Rely on gradient-based optimization techniques with gradient

G = Eπθ(τ)[R(τ)∇θ log πθ(τ)].

1(Sutton and Barto, 2018): Reinforcement Learning: An introduction
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Advantages of Random estimates

Easy and Practical
→ Requires only three steps: sampling, evaluating, averaging

Randomness as a Strength
→ Naturally escape local optima2

→ Complete exploration of the search space

Large-Scale learning
→ simple, scalable, parallelizable
→ in supervised learning, deterministic gradient scales as O(nd), stochastic
version reduces to O(d) operations

Theoretical justifications3

→ deterministic methods O(n−s/d)

→ optimal random procedure O(n−1/2n−s/d)

2(Gadat et al., 2018): Stochastic heavy ball
3(Novak, 2016): Some results on the complexity of numerical integration
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Outline for today

Integrate F(θ) =

∫
X
f (x)πθ(dx)→ Optimize F with ∇F

Part I: Monte Carlo Integration (approximate F(θ))

Part II: Stochastic Optimization Methods (optimize F)
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Part I: Integration F
Monte Carlo Integration,

Variance Reduction

1. R. Leluc, F. Portier and J. Segers. Control Variate Selection for Monte Carlo
Integration. (Leluc et al., 2021)
In Statistics and Computing 31, 50, pages1-27, 2021.

2. R. Leluc, F. Portier, J. Segers and A. Zhuman. A Quadrature Rule combining
Control Variates and Adaptive Importance Sampling. (Leluc et al., 2022)
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

3. R. Leluc, F. Portier, J. Segers and A. Zhuman. Speeding up Monte Carlo
Integration: Nearest Neighbors as Control Variates. arXiv preprint, 2023.

7



Monte Carlo integration

Underlying integration problem

Let (X ,A, π) be a probability space, f : X → R with f ∈ L2(π).
• Goal:

π(f ) :=

∫
X
f (x)π(dx) = Eπ[f (X )].

• Constraints: f is unknown (black-box) or no approximation is
sufficiently accurate, sampling from π may be hard.

Let X1, ...,Xn
i.i.d.∼ π, naive Monte Carlo estimator α̂mc

n (f ) of π(f ) is

α̂mc
n (f ) :=

1
n

n∑
i=1

f (Xi ) (3)

Research Questions (Part I)

• How to reduce the variance of Monte Carlo estimates?
• How to sample from π? • How to achieve optimal convergence rates?

Ref: Metropolis and Ulam (1949); Robert and Casella (1999); Evans and Swartz (2000);
Glasserman (2004); Owen (2013); Novak (2016); Chopin and Gerber (2022)
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Variance Reduction with Control Variates

Definition: Control Variates
Functions h1, . . . , hm ∈ L2(π) with known integrals:

∀1 ≤ j ≤ m, Eπ[hj ] = 0

→ Stein control variates, families of orthogonal polynomials

• Let h = (h1, . . . , hm)>, for any β ∈ Rm, we have Eπ[f − β>h] = Eπ[f ]

leading to the CV estimate of α, parameterized by β

CV-Monte Carlo

α(cv)
n (f , β) =

1
n

n∑
i=1

(
f (Xi )− β>h(Xi )

)
, X1, . . . ,Xn ∼ π.

• What optimal choice for β∗ ? Look at variance and define

β∗ = arg min
β∈Rm

Eπ
[
(f − π(f )− β>h)2]
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Integration with Linear regression

From integration to linear regression

The integral π(f ) appears as the intercept
of a linear regression model with response
f and explanatory variables h1, . . . , hm,

L2-orthogonal projection.

• The integral and oracle coefficient satisfy

(π(f ), β?(f )) ∈ arg min
(α,β)∈R×Rm

π[(f − α− β>h)2] (4)

• Replacing the distribution π by the sample measure π̂n gives theOrdinary

Least Squares (OLS) estimate, X1, . . . ,Xn ∼ π(
α̂(cv)
n , β̂

(cv)

n

)
∈ arg min

(α,β)∈R×Rm

1
n

n∑
i=1

(
f (Xi )− α− β>h(Xi )

)2 (5)
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From Ordinary Least Squares Monte Carlo...

Limitations of OLSMC.
• (Overfitting) Too many variables or/and few samples (case m >> n)
• (Collinearity) Dependence among variables → very large coefficients

How to avoid those problems ?

Bet on sparsity with variable selection!

Image generated by text-to-image A.I. midjourney with the command:
”super-hero cowboy twirling his lasso in the air, comic-book style”.
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... to Lasso Monte-Carlo (LASSOMC/LSLASSO)

Control Variates estimates: OLS, LASSO, LSLASSO

(
α̂ols
n (f ), β̂ols

n (f )
)

= arg min
(α,β)∈R×Rm

‖f (n) − α1n − Hβ‖22(
α̂lasso
n (f ), β̂lasso

n (f )
)

= arg min
(α,β)∈R×Rm

1
2n
‖f (n) − α1n − Hβ‖22 + λ‖β‖1(

α̂lslasso
n (f ), β̂lslasso

n (f )
)

= arg min
(α,β)∈R×R ˆ̀

‖f (n) − α1n − HŜβ‖22

• Active set S? = {k : β?k 6= 0} and sparsity level `? = Card(S?)

• LSLASSOMC:
(1) Ŝ = {k : β̂lasso

N,k (f ) 6= 0} estimated active set with LASSO
(2) Solve subproblem OLS with selected control variates
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Non-asymptotic Error Analysis

Assumptions: sub-gaussian residuals ε = f − π(f )− β?>h with factor τ .

Concentration inequalities

For δ ∈ (0, 1) with probability at least 1− δ, for OLS, LASSO, LSLASSO

|α̂ols
n (f )− π(f )| ≤

√
2 log(8/δ)

τ√
n

+ C1
√
Bm log(8m/δ)

τ

n

|α̂lasso
n (f )− π(f )| ≤

√
2 log(8/δ)

τ√
n

+ C2(U2
h/γ

?)`? log(8m/δ)
τ

n

|α̂lslasso
n (f )− π(f )| ≤

√
2 log(16/δ)

τ√
n

+ C3
√
B?`? log(16`?/δ)

τ

n

Uh = max
j=1,...,m

‖hj‖∞
G = Eπ[hh>], γ = λmin(G ), ~ = G−1/2h;B = supx ‖~(x)‖22
G?, γ?,B? restricted on active set
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Evidence Estimation in Bayesian Models

• Model likelihood `(x |θ) and prior distribution π(θ), compute evidence

Z =

∫
Θ

`(x |θ)π(θ)dθ

m=0
(Vanilla)

deg<=2
m=90

deg<=4
m=444

deg<=6
m=1062

deg<=10
m=3090

deg<=15
m=5730

0.985

0.990

0.995

1.000

1.005

1.010

OLS
Lasso
LSLasso
LSLassoX

m=0
(Vanilla)

deg<=1
m=61

deg<=3
m=183

deg<=5
m=305

deg<=10
m=610

deg<=20
m=1220

0.96

0.98

1.00

1.02

1.04
OLS
Lasso
LSLasso
LSLassoX

Boxplots of Error Distribution for Capture (d = 12) and Sonar (d = 61) datasets4 ,
n = 5000;N = 1000, obtained over 100 replications.

4(Marzolin, 1988; Gorman and Sejnowski, 1988)
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Monte Carlo Integration and Importance Sampling

GOAL:
π(f ) =

∫
Rd

f (x)π(x) dx

Can we sample from target distribution π ?

• YES, use naive Monte Carlo estimate (+ control variates)

α̂(mc)
n (f ) =

1
n

n∑
i=1

f (Xi ), X1, . . . ,Xn ∼ π

• NO, use Adaptive Importance Sampling with sampling policy (qi )i≥0

(x)
q1(x)

(x)
q2(x)

(x)
qT(x)

Evolution of sampling policy is AIS.

X1 ∼ q0, . . . ,Xi ∼ qi−1

α̂(ais)
n (f ) =

∑n
i=1 wi f (Xi )∑n

i=1 wi

where the sequence (wi )i=1,...,n of importance weights is defined by

wi = π(Xi )/qi−1(Xi ).
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Adaptive Importance Sampling with Control Variates

AISCV estimate: Weighted Least Squares

Particles Xi ∼ qi−1 and weights wi = π(Xi )/qi−1(Xi ),

(α̂n, β̂n) = arg min
a∈R,b∈Rm

n∑
i=1

wi

[
f (Xi )− a− b>h(Xi )

]2
.

• (a) (Exact integration) whenever f is of the form α + β>h for some
α ∈ R and β ∈ Rm, the error is zero, i.e., α̂n = π(f ) =

∫
f π dλ.

• (b) (Quadrature Rule) α̂n =
∑n

i=1 vn,i f (Xi ), for quadrature weights
vn,i that do not depend on the function f and that can be computed
by a single weighted least squares procedure.

• (c) (Bayesian) it can be computed even when π is known only up to a
multiplicative constant.

• (d) (post-hoc) CV can be brought into play in a post-hoc scheme, after
generation of the particles and importance weights, and this for any AIS
algorithm 16



Non-asymptotic error analysis

Residuals ε = f −α−β>h with (α, β) = arg mina,b

∫
(f − a− b>h)2πdλ.

Assumptions

(A1) ∃c ≥ 1 : ∀x ∈ Rd , π(x) ≤ c · qi (x).

(A2) sup
x :π(x)>0

|hj(x)| <∞ and G = Eπ[hh>] invertible.

(A3) ∃τ > 0 : ∀t > 0, i ≥ 1, P[|wiε(Xi )| > t | Fi−1] ≤ 2 exp(−t2/(2τ2))

Concentration inequality for AISCV estimate

Under assumptions, for any δ ∈ (0, 1) and for all n ≥ C1c
2B log(10m/δ),

we have, with probability at least 1− δ, that∣∣∣α̂(aiscv)
n (f )− π(f )

∣∣∣ ≤ C2
√

log(10/δ)
τ√
n

+ C3cB log(10m/δ)
τ

n
,

where C1, C2, C3 are some constants and B = supx :π(x)>0 ‖~(x)‖22,
~ = G−1/2h.
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Synthetic examples: Gaussian Mixtures

Similar framework as Cappé et al. (2008).
Integrand and Target: f (x) = x , πΣ(x) = 0.5ΦΣ(x −µ) + 0.5ΦΣ(x +µ)

where µ = (1, . . . , 1)>/2
√
d ,Σ = Id/d and ΦΣ is pdf N (0,Σ).

Sampling policy: Multivariate Student

Control variates: Stein method with ϕ = polynomial with bounded degree
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Gaussian mixture density: Logarithm of ‖α̂n(f )− π(f )‖22 for f (x) = x with target
isotropic πΣ with d = 4 (left), d = 8 (right).
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Complexity rates for integration error

Definition: Root Mean Squared Error (RMSE)

The error δn of a procedure α̂n(f ) that approximates π(f ) is

δn = E
[
|α̂n(f )− π(f )|2

]1/2
→ Lipschitz integrands5, optimal rate in O(n−1/2n−1/d) (Novak, 2016)

OLS control variates
(Portier and Segers, 2019)

O(n−1/2m−1/d)

Determinantal sampling
(Bardenet and Hardy, 2020)

O(n−1/2n−1/2d)

Control Functionals
(Oates et al., 2017)

O(n−7/12)

Cubic Stratification
(Haber, 1966; Chopin and Gerber, 2022)

O(n−1/2n−1/d)

5for integrand with s bounded derivatives, rate in O(n−1/2n−s/d )
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General view of Control Variates

Control Functionals

• Build surrogate function f̂ with known integral π(f̂ )

• Use centered variables f̂ (Xi )− π(f̂ ) to derive the following enhanced
Monte Carlo estimate with control variates

α̂(CV )
n (f ) =

1
n

n∑
i=1

{
f (Xi )−

(
f̂ (Xi )− π(f̂ )

)}

Approximation in L2(π)

Let (X1, . . .Xn) ∼ π. Suppose that f̂ depends only on a surrogate sample
X̃1, . . . , X̃N which is independent from (X1, . . .Xn), then

E
[
|α̂(CV )

n (f )− π(f )|2
]
≤ 1

n
E
[ ∫

(f − f̂ )2dπ
]
.

20



Control Functionals examples

• RKHS approximation: (Oates, Girolami, and Chopin, 2017)
Ridge regression in Hilbert space H

f̂ ∈ arg min
ϕ∈H

1
N

N∑
i=1

(f (X̃i )− ϕ(X̃i ))2 + λ‖ϕ‖2H

• Basis functions: (Portier and Segers, 2019; Leluc et al., 2021)
Use m basis functions h1, . . . , hm to fit OLS:

f̂ = β̂
>
n h,

(
α̂n, β̂n

)
= arg min

(α,β)∈R×Rm

‖f (n) − α1n − Hβ‖22

• Partitioning and Stratification: (Chopin and Gerber, 2022)
(X̃1, . . . , X̃N) is the (1/`)-equidistant grid of [0, 1]d with N = `d , ` ≥ 1
and (Ri )i=1,...,N is the partition of [0, 1]d made of the rectangles.

f̂ (x) =
N∑
i=1

f (X̃i )1Ri (x)
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Nearest Neighbors

Control Neighbors

α̂(CVNN)
n (f ) =

1
n

n∑
i=1

{
f (Xi )−

(
f̂

(i)

n (Xi )− π(f̂ n)
)}

Leave-one-out Nearest Neighbors:
Take same sample (X1, . . . ,Xn) and define

f̂ n(x) =
n∑

j=1

f (Xj)1Sn,j (x), f̂
(i)

n (x) =
∑
j 6=i

f (Xj)1S
(i)
n,j

(x)

where Sn,j are Voronoï cells
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Control Neighbors properties

Control Neighbors

α̂(CVNN)
n (f ) =

1
n

n∑
i=1

{
f (Xi )−

(
f̂

(i)

n (Xi )− π(f̂ n)
)}

• (a) (Same framework as naive MC) does not require the existence of
control variates with known integrals

• (b) (Quadrature Rule) α̂n =
∑n

i=1 wn,i f (Xi ), for quadrature weights
wn,i that do not depend on the function f .

• (c) (Practical tool box) The weights wn,i are built using efficient nearest
neighbors estimates (Bentley, 1975; Pedregosa et al., 2011)

• (d) (post-hoc) CVNN can be brought into play in a post-hoc scheme
→ include other sampling design like MCMC or AIS.

Complexity rate for integration error of Control Neighbors

E
[
|α̂(CVNN)

n (f )− π(f )|2
]1/2
≤ Cn−1/2n−1/d
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Control Neighbors on synthetic integrands

• f1(x1, . . . , xd) = sin(π( 2
d

∑d
i=1 xi − 1)) with π = 1[0,1]d

• f2(x1, . . . , xd) = sin(πd
∑d

i=1 xi ) with π = Nd(0, Id)
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Part II: Optimize F
Stochastic Optimization

1. R. Leluc and F. Portier. Asymptotic Analysis of Conditioned Stochastic
Gradient Descent. Transactions on Machine Learning Research, 2023 (Leluc and
Portier, 2020)

2. R. Leluc and F. Portier. SGD with Coordinate Sampling: Theory and Practice.
In Journal of Machine Learning Research 23 (JMLR), (342):1–47, 2022. (Leluc
and Portier, 2022)
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Stochastic Optimization

Underlying optimization problem
Let F : Θ→ R be a general objective function.
• Goal:

min
θ∈Θ
{F(θ) = Ez∼π[f (θ, z)]}

• Constraints: ∇F is hard to compute (large-scale problems) or even
intractable (black-box) !

Empirical Risk Minimization. F̂(θ) = n−1∑n
i=1 fi (θ) and true gradient,

n−1∑n
i=1∇fi (θ) requires n evaluations, too heavy !

Stochastic Gradient Descent (Robbins and Monro, 1951)

(SGD) θt+1 = θt − γt+1g t with E[g t ] = ∇F(θt)

Ref: Robbins and Siegmund (1971); Bertsekas and Tsitsiklis (2000); Sacks (1958);
Kushner and Clark (1978); Pelletier (1998); Benaïm (1999); Gadat et al. (2018); Moulines
and Bach (2011); Bottou et al. (2018)
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Limitations of SGD: choice of the learning rate (γt)

Conditioned-SGD
(CSGD) θt+1 = θt − γt+1C tg t

Research Questions (Part II)

• What condition on C t for convergence? Asymptotic normality?
• How to leverage structure in data?

Existing methods (motivation)

• 2nd Order methods: C t ≈ ∇2F(θ?)−1 or C t ≈ ∇2F(θt)
−1

Stochastic Newton and Quasi-Newton (Byrd et al., 2016) and (L)BFGS
methods (Liu and Nocedal, 1989; Moritz et al., 2016)

• Fisher information matrix : C t = F (θt)

Natural gradient (Amari, 1998; Kakade, 2002)

• (Diagonal) Scalings: C t = G
−1/2
t ;G t+1 = G t + g tg

>
t

AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), Adam
(Kingma and Ba, 2014) and AMSGrad (Reddi et al., 2018)
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From SGD...to Conditioned-SGD

Optimization problem

For general non-convex F , find θ? ∈ arg minθ∈Θ {F(θ) = Eξ[f (θ, ξ)]}

Central Limit Theorem CSGD
Under standard assumptions, if C t → C almost surely then the iterates of
CSGD satisfy

(θt − θ?)√
γt

 N (0,ΣC ), as t → +∞.

• Optimal choice C? = H−1 with H = ∇2F(θ?) in the sense: ΣC? � ΣC

• Practical procedure to achieve optimality C t → C?

28



SGD with Coordinate Sampling

(SCGD): Stochastic Coordinate Gradient Descent

(SCGD) θt+1 = θt − γt+1C (ζt+1)g t+1

with C (k) = eke
T
k = Diag(0, . . . , 0, 1, 0, . . . , 0).

ζt+1 is a random variable valued in J1, dK.
→ Reduction of computing cost
→ 2 sources of randomness: noisy gradient g t + random ζt

Research Questions and Contributions
• How to update the selecting policy ζt+1 ?
→ algorithm MUSKETEER to leverage the data structure and move
along relevant directions.
• What condition on ζt+1 for convergence ?
→ analysis of the properties of SCGD algorithms (convergence of the
iterates, convergence of the policy, non-asymptotic bound)
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Related work

• CD using F or true gradient ∇F (Loshchilov et al., 2011; Richtárik and
Takáč, 2016; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu
et al., 2016; Namkoong et al., 2017)

• Most related idea: Gauss-Southwell rule to select the largest gradient
coordinate to move the iterate (Nutini et al., 2015)

→ Here: stochastic g t and ζt

• Sparsification methods (Alistarh et al., 2017; Wangni et al., 2018) ,
unbiased importance sampling estimate of the gradient
→ Here: no reweighting (biased) (conditioned gradient)

30



General framework and notation

• Only one coordinate ζt+1 is selected: θt+1 = θt − γt+1C (ζt+1)g t+1{
θ

(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t+1 if k = ζt+1

• The distribution of ζt+1, is the coordinate sampling policy and is given
by the probability weights vector pt = (p

(1)
t , . . . , p

(d)
t )

p
(k)
t = P(ζt+1 = k |Ft), k ∈ J1, dK.

• Not the same mean field as in usual SGD. Under conditional indepen-
dence between g t+1 and ζt+1:

E[C (ζt+1)g t+1|Ft ] = Diag(pt)∇F(θt)
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Reinforcement Coordinate Sampling with MUSKETEER

MUltivariate
Stochastic
Knowledge
Extraction
Through
Exploration
Exploitation
Reinforcement
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MUSKETEER

MUSKETEER may be seen as an adaptive bandit problem with

′arms = coordinates ′

Alternate between 2 phases

• Exploration phase (one for all) (duration T )
1. fix p = pt , draw random coordinate ζ ∼ p and noisy gradient g
2. move iterate: θ(ζ) ← θ(ζ) − γg (ζ)

3. update gains of visited coordinates: G (ζ) ← G (ζ) + g (ζ)/p(ζ)

• Exploitation phase (all for one)
1. share knowledge of the total gains
2. update probability vector pt with mixture

p
(k)
t+1 = (1− λ)

exp(η|G (k)
t |/t)∑d

j=1 exp(η|G (j)
t |/t)

+ λ
1
d
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Numerical Experiments: Zeroth-Order Optimization

• We apply ERM to regularized regression and classification problems.
Special covariance structure

X [:, k] ∼ N (0, σ2
k In) with σ2

k = k−2 for k ∈ J1, dK

• ZO gradient estimates:
(finite differences) gh(θ, ξ) =

∑d
k=1 h

−1[f (θ + hek , ξ)− f (θ, ξ)]ek

(Nesterov) gh(θ, ξ) = h−1[f (θ + hU, ξ)− f (θ, ξ)]U with U ∼ N (0, I )
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Training Losses for Ridge regression and Logistic regression, obtained over 100
replications. Parameters γt = 1/t, n = 10, 000, d = 250, T = b

√
dc = 15
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Main results: MUSKETEER

Gradients might be biased
There exists constant c ≥ 0 such that

∀h > 0, θ ∈ Rp, ‖Eξ[gh(θ, ξ)]−∇F(θ)‖ ≤ ch.

h ≥ 0 is a parameter controlling the bias with condition h2
t = O(γt)

Theoretical results
• The sequence of iterates (θt)t≥0 obtained by MUSKETEER satisfies
∇F(θt)→ 0 almost surely as t → +∞.
• The MUSKETEER’s coordinate policy (pt)t∈N converges weakly to the
uniform distribution.
• Let (θt)t∈N obtained by MUSKETEER with γt = γ/t then

E [F(θt)−F?] = O(1/t)
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Conclusion
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Conclusion & Perspectives

Integrate F(θ) =

∫
X
f (x)πθ(dx)→ Optimize F with ∇F

Takeaways.

• Non-asymptotic theory and practical procedures for Monte Carlo methods with
control variates; Optimal convergence rates with nearest neighbors.

• Asymptotic analysis of Conditioned SGD methods; Theoretical and practical
study of SGD with coordinate sampling.

Future work.

• Control variates for Markov chains; concentration inequality for CVNN

• Federated Learning applications of adaptive sampling.
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