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Motivation: Machine Learning recent advances
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Motivation: need for integral estimators

Central Question: Integration

Computation of an integral through probabilistic objective F
FO) = En@li@] = | f@m 1)

Main issue: intractability and computational cost
e (RL) Trajectory 7 = (sq,ag,-..,Sr7—1,ar—1) with policy my

and cumulative return R(7) = 327 4tr(sy, ar).

./—"(9) = Eﬂ'e(T) [R(T)]

(2016) AlphaGo A.I.
beats champion Lee

e (V1) F optimises the log-likelihood log p(x|z) under a regular-  s.orin co.
ization constraint which promotes closeness between the density
q and the prior distribution p(2)

ELBO = F(6) = Eqyeja llog p(22)] — KL(gu(212)]Ip(2).



Advantages of Random estimates

v Easy and Practical
— Requires only three steps: sampling, evaluating, averaging

9 Randomness as a Strength
— Naturally escape local optima
— Complete exploration of the search space

‘iii Large-Scale learning

— simple, scalable, parallelizable

— in supervised learning, deterministic gradient scales as O(nd), stochastic
version reduces to O(d) operations

© Theoretical Jjustifications®
— deterministic methods O(n~=%/%)
— optimal random procedure O(n~'/?n=°/4)

1(Novak, 2016): Some results on the complexity of numerical integration



Integration F

Monte Carlo Integration & Variance Reduction




Monte Carlo integration

Underlying integration problem
Let (X, A, ) be a probability space, f: X — R with f € Lo(7).
e Goal:

n(f) = /X f(@)m(dz) = EA[f(X)].

e Constraints: f is unknown (black-box) or no approximation is
sufficiently accurate, sampling from 7 may be hard.

i.i.d Amc

Let X1,...,X,, ~ m, naive Monte Carlo estimator &°(f) of ©(f) is
~mc 1 -
i=1

Research Questions
e How to reduce the variance of Monte Carlo estimates?
e How to sample from 77 e How to achieve optimal convergence rates?

Ref: Metropolis and Ulam (1949); Robert and Casella (1999); Evans and Swartz (2000);
Glasserman (2004); Owen (2013); Novak (2016); Chopin and Gerber (2024)



Complexity rates for integration error

Definition: Root Mean Squared Error (RMSE)

The error 0,, of a procedure &, (f) that approximates 7 (f) is

1/2

On = E [|an(f) = n(f)I?]

— Lipschitz integrands?, optimal rate in O(n~/?n='/%) (Novak, 2016)

OLS control variates
(Portier and Segers, 2019)
Determinantal sampling
(Bardenet and Hardy, 2020)
Control Functionals
(Oates et al., 2017)

Cubic Stratification

(Haber, 1966; Chopin and Gerber, 2024)

2for integrand with s bounded derivatives, rate in O(n=1/2n—5/4)

O(nfl/mel/d)

O(n—l/Qn—l/Qd)

O(Tf?/m)

O(n=1/2n=1/4)



General view of Control Variates

Control Functionals

e Build surrogate function f with known integral 7(f)
e Use centered variables f(X;) — m(f) to derive the following enhanced
Monte Carlo estimate with control variates

n

() = = S {5 - (Fox =) }

=1

Approximation in Ly(7)

Let (X4,...X,,) ~ 7. Suppose that f depends only on a surrogate
sample X1, ..., Xxn which is independent from (X1,...X,), then

E[l6V() ~n(P] < B[ [ (7 - 7aa].



Control Functionals examples

e RKHS approximation: (Oates, Girolami, and Chopin, 2017)
Ridge regression in Hilbert space H
N

j  argmin = ;wm — (X)) + AllZ

e Basis functions: (Portier and Segers, 2019; Leluc et al., 2021)

Use m basis functions hq, ..., h,, to fit OLS:
“ AT .
f=05,h, (&n,ﬂn) = argmin Hf(") —al, — H/)’H%
(o, B) ERXR™

o Partitioning and Stratification: (Chopin and Gerber, 2024)
(X1,...,Xn) is the (1/£)-equidistant grid of [0,1]¢ with N = ¢4, ¢ > 1

and (R;);=1,... n is the partition of [0, 1]d made of the rectangles.
A N ~
F@) =) f(X)lg,(z)
i=1
9




Nearest Neighbors

Control Neighbors
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Leave-one-out Nearest Neighbors:
Take same sample (X,...,X,,) and define




Control Neighbors properties

Control Neighbors
() = 23 {70x) - (B - (7)) }

e (a) (Same framework as naive MC) does not require the existence of
control variates with known integrals

e (b) (Quadrature Rule) &, = >, w, ; f(X;), for quadrature weights
wy,; that do not depend on the function f.

o (c) (Practical tool box) The weights w;, ; are built using efficient nearest
neighbors estimates (Bentley, 1975; Pedregosa et al., 2011)

Complexity rate for integration error of Control Neighbors

1/2
E (|60 (f) = m(f)2] gm0
GCYIM(f) = m(£)| S v/Iog(1/e) (log n) /41 2n /4

(with proba greater than 1 — ¢) 11



rol Neighbors on synthetic integrands

filxy, ... xq) = sin(ﬂ(% Ele x; — 1)) with 7 = 1o 3ja
fa(z1, ..., xq) = sin(5 S &) with = Ny (0, 1)

-1
RS L 107 L 107
e e e
I I I
2 2 2
8 10-2 & T
S10 oo, | 3 s
g 10 g
g g 2
= 10-3 = =
8 —— MC 8 —e— MC k] —e— MC
e —¥— CUNN & 43| = N e —¥— CUNN
o(n17) 20 o(n~17) o(n~17)
o, O(n-12n-114) Otn-12n-114) 10- Otn-12n-114)
10* 10? 10% 104 10* 10? 10% 104 10* 10? 10% 104
Sample size n Sample size n Sample size n
S
g0 g10 §10
o o o
o o o
5 5 5
3 3 3
T z z
@ 10-2 =~ & @
< £1072 e &
3 e MC 3 —- MC 3 e mC
21073 = o 2 —v— CVNN 2 —v— CVNN
o(n12) o(n=12) o(n=12)
- O(n-12p-19) 10734 —-- o(n-12p-1e) - O(n-12p-1sy
10! 102 10° 104 10! 102 10° 104 10! 102 10° 104
Sample size n Sample size n Sample size n

Error curves for fi(top) and f2(bottom) with d € {2;3;4}

12



rol Neighbors on Sphere S?

fg(l’., Yy, 2) = cos(z+y+2), fa(z,y, Z) = COS('I) COS(y) cos(2), f5(z, y, Z) = exp(m—y)
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Control Neighbors for Option Pricing

Black-Scholes model with spot price Sy
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Heston Model with spot ptice Sy = 100, strike K = Sy, barrier price H = 130,
maturity 7' = 2 months, risk-free rate r = 0.1, initial volatility v9 = 0.1, long-run
average variance 6§ = 0.02, rate of mean reversion k = 4, instanteneous correlation
p = 0.8 and volatility of volatility £ = 0.9.(left: "Up-In"/right: "Up-Out”)
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Control Neighbors for Sliced-Wasserstein

e Compare standard Monte Carlo estimate (SW-MC) with the proposed control
neighbors estimate (SW-CVNN) when computing the Sliced-Wasserstein dis-
tance between two Gaussian distributions SWa (P, Q).

oP = Ny(mx,0%1;) and Q = Ny(my, 03 1,), mx, my ~N(0,1;) and ox = 2
and oy = 5, empirical distributions P,, and @Q,, based on m = 2000 samples,
n € {50; 100; 250; 500; 1000}
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Boxplots of Sliced-Wasserstein estimates SW-MC and SW-CVNN for Gaussian

distributions on R? with ¢ € {3;6}. The boxplots are obtained over 100 replications. 15



Conclusion

e We have explored the use of nearest neighbors in the construction of
control variates for variance reduction in Monte Carlo integration.

e We have shown that for Holder integrands of regularity s € (0,1] on
bounded metric spaces of dimension d as measured by a sufficiently regular
probability distribution, a faster rate of convergence, in O(n~/2n=5/%)
as n — o0, is possible through the construction of a control variate via
leave-one-out neighbors.

e (Theory) Theoretical guarantees are given both in terms of bounds on
the root mean squared error and as concentration inequalities (requiring
an additional logarithmic factor).

e (Practice) In numerical experiments, the method enjoyed a notable error
reduction with respect to Monte Carlo integration.

16
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