Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence

Rémi LELUC

Ecole Polytechnique, Institut Polytechnique de Paris, France

Joint work with François Portier, Johan Segers and Aigerim Zhuman paper Published in *Bernoulli, 2024.*

Motivation: Machine Learning recent advances

"Intelligence"

Data + Models + **Algorithms** + Computing Power

Motivation: need for integral estimators

Central Question: Integration

Computation of an integral through probabilistic objective ${\cal F}$

$$\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(x)}[f(x)] = \int_{\mathcal{X}} f(x)\pi_{\theta}(x) \mathrm{d}x.$$
(1)

Main issue: intractability and computational cost

• (RL) Trajectory $\tau = (s_0, a_0, \dots, s_{T-1}, a_{T-1})$ with policy π_{θ} and cumulative return $\mathcal{R}(\tau) = \sum_{t=0}^{T-1} \gamma^t r(s_t, a_t)$.

$$\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(\tau)}[\mathcal{R}(\tau)]$$

$$\mathsf{ELBO} = \mathcal{F}(\theta) = \mathbb{E}_{q_{\theta}(z|x)}[\log p(x|z)] - \mathsf{KL}(q_{\theta}(z|x)||p(z)).$$

(2016) AlphaGo A.I. beats champion Lee Sedol in Go.

Seasy and Practical

 \rightarrow Requires only three steps: sampling, evaluating, averaging

🕏 Randomness as a Strength

- \rightarrow Naturally escape local optima
- \rightarrow Complete exploration of the search space

Zarge-Scale learning

 \rightarrow simple, scalable, parallelizable

 \to in supervised learning, deterministic gradient scales as O(nd), stochastic version reduces to O(d) operations

Theoretical justifications¹

- \rightarrow deterministic methods $O(n^{-s/d})$
- \rightarrow optimal random procedure $O(n^{-1/2}n^{-s/d})$

¹(Novak, 2016): Some results on the complexity of numerical integration

Integration \mathcal{F}

Monte Carlo Integration & Variance Reduction

Monte Carlo integration

Underlying integration problem

Let $(\mathcal{X}, \mathcal{A}, \pi)$ be a probability space, $f : \mathcal{X} \to \mathbb{R}$ with $f \in L_2(\pi)$. • Goal:

$$\pi(f) := \int_{\mathcal{X}} f(x)\pi(\mathrm{d}x) = \mathbb{E}_{\pi}[f(X)].$$

• **Constraints:** f is unknown (black-box) or no approximation is sufficiently accurate, sampling from π may be hard.

Let $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \pi$, naive Monte Carlo estimator $\hat{\alpha}_n^{\text{mc}}(f)$ of $\pi(f)$ is

$$\hat{\alpha}_n^{\rm mc}(f) := \frac{1}{n} \sum_{i=1}^n f(X_i)$$
 (2)

Research Questions

- How to reduce the variance of Monte Carlo estimates?
- How to sample from π ? How to achieve optimal convergence rates?

Ref: Metropolis and Ulam (1949); Robert and Casella (1999); Evans and Swartz (2000); Glasserman (2004); Owen (2013); Novak (2016); Chopin and Gerber (2024)

Complexity rates for integration error

Definition: Root Mean Squared Error (RMSE)

The error δ_n of a procedure $\hat{\alpha}_n(f)$ that approximates $\pi(f)$ is

 $\delta_n = \mathbb{E}\left[|\hat{\alpha}_n(f) - \pi(f)|^2\right]^{1/2}$

 \rightarrow Lipschitz integrands², **optimal rate** in $O(n^{-1/2}n^{-1/d})$ (Novak, 2016)

OLS control variates	$O(m^{-1/2}m^{-1/d})$
(Portier and Segers, 2019)	O(n + m +)
Determinantal sampling	$O(n^{-1/2}n^{-1/2d})$
(Bardenet and Hardy, 2020)	O(n + n +)
Control Functionals	$O(m^{-7/12})$
(Oates et al., 2017)	O(n +)
Cubic Stratification	$O(m^{-1/2}m^{-1/d})$
(Haber, 1966; Chopin and Gerber, 2024)	O(n + n +)
² for integrand with s bounded derivatives, rate in $O(n^{-1/2}n^{-s/d})$	

Control Functionals

- Build surrogate function \hat{f} with known integral $\pi(\hat{f})$
- Use centered variables $\hat{f}(X_i)-\pi(\hat{f})$ to derive the following enhanced Monte Carlo estimate with control variates

$$\hat{\alpha}_{n}^{(CV)}(f) = \frac{1}{n} \sum_{i=1}^{n} \left\{ f(X_{i}) - \left(\hat{f}(X_{i}) - \pi(\hat{f})\right) \right\}$$

Approximation in $L_2(\pi)$

Let $(X_1, \ldots X_n) \sim \pi$. Suppose that \hat{f} depends only on a surrogate sample $\tilde{X}_1, \ldots, \tilde{X}_N$ which is independent from $(X_1, \ldots X_n)$, then

$$\mathbb{E}\left[|\hat{\alpha}_n^{(CV)}(f) - \pi(f)|^2\right] \le \frac{1}{n} \mathbb{E}\left[\int (f - \hat{f})^2 \mathrm{d}\pi\right].$$

Control Functionals examples

• RKHS approximation: (Oates, Girolami, and Chopin, 2017) Ridge regression in Hilbert space \mathcal{H}

$$\hat{f} \in \underset{\varphi \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} (f(\tilde{X}_i) - \varphi(\tilde{X}_i))^2 + \lambda \|\varphi\|_{\mathcal{H}}^2$$

• Basis functions: (Portier and Segers, 2019; Leluc et al., 2021) Use m basis functions h_1, \ldots, h_m to fit OLS:

$$\hat{f} = \hat{\boldsymbol{\beta}}_n^{\top} h, \qquad (\hat{\alpha}_n, \hat{\boldsymbol{\beta}}_n) = \operatorname*{arg\,min}_{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m} \|f^{(n)} - \alpha \mathbb{1}_n - H\boldsymbol{\beta}\|_2^2$$

• Partitioning and Stratification: (Chopin and Gerber, 2024) $(\tilde{X}_1, \ldots, \tilde{X}_N)$ is the $(1/\ell)$ -equidistant grid of $[0, 1]^d$ with $N = \ell^d$, $\ell \ge 1$ and $(R_i)_{i=1,\ldots,N}$ is the partition of $[0, 1]^d$ made of the rectangles.

$$\hat{f}(x) = \sum_{i=1}^{N} f(\tilde{X}_i) \mathbb{1}_{R_i}(x)$$

Nearest Neighbors

Control Neighbors

$$\hat{\alpha}_{n}^{(CVNN)}(f) = \frac{1}{n} \sum_{i=1}^{n} \left\{ f(X_{i}) - \left(\hat{f}_{n}^{(i)}(X_{i}) - \pi(\hat{f}_{n}) \right) \right\}$$

Leave-one-out Nearest Neighbors:

Take same sample (X_1, \ldots, X_n) and define

$$\hat{f}_n(x) = \sum_{j=1}^n f(X_j) \mathbb{1}_{S_{n,j}}(x), \qquad \hat{f}_n^{(i)}(x) = \sum_{j \neq i} f(X_j) \mathbb{1}_{S_{n,j}^{(i)}}(x)$$

where $S_{n,j}$ are Voronoï cells

Control Neighbors properties

Control Neighbors

$$\hat{\alpha}_{n}^{(CVNN)}(f) = \frac{1}{n} \sum_{i=1}^{n} \left\{ f(X_{i}) - \left(\hat{f}_{n}^{(i)}(X_{i}) - \pi(\hat{f}_{n}) \right) \right\}$$

• (a) (<u>Same framework as naive MC</u>) does not require the existence of control variates with known integrals

• (b) (Quadrature Rule) $\hat{\alpha}_n = \sum_{i=1}^n w_{n,i} f(X_i)$, for quadrature weights $w_{n,i}$ that do not depend on the function f.

• (c) (<u>Practical tool box</u>) The weights $w_{n,i}$ are built using efficient nearest neighbors estimates (Bentley, 1975; Pedregosa et al., 2011)

Complexity rate for integration error of Control Neighbors

$$\begin{split} \mathbb{E}\left[|\hat{\alpha}_{n}^{(CVNN)}(f) - \pi(f)|^{2}\right]^{1/2} &\lesssim n^{-1/2}n^{-s/d} \\ &|\hat{\alpha}_{n}^{(CVNN)}(f) - \pi(f)| \lesssim \sqrt{\log(1/\varepsilon)}(\log n)^{1+s/d}n^{-1/2}n^{-s/d} \end{split}$$
 (with proba greater than $1 - \varepsilon$)

Control Neighbors on synthetic integrands

- $f_1(x_1, \ldots, x_d) = \sin(\pi(\frac{2}{d}\sum_{i=1}^d x_i 1))$ with $\pi = \mathbb{1}_{[0,1]^d}$
- $f_2(x_1, ..., x_d) = \sin(\frac{\pi}{d} \sum_{i=1}^d x_i)$ with $\pi = \mathcal{N}_d(0, I_d)$

Error curves for $f_1(top)$ and $f_2(bottom)$ with $d \in \{2, 3, 4\}$

13

Control Neighbors for Option Pricing

Black-Scholes model with spot price $S_0 = 100$, strike $K = S_0$, maturity T = 2 months, risk-free rate r = 0.1, constant volatility $\sigma = 0.3$, barrier price H = 130.(left: "Up-In"/right: "Up-Out")

Heston Model with spot ptice $S_0 = 100$, strike $K = S_0$, barrier price H = 130, maturity T = 2 months, risk-free rate r = 0.1, initial volatility $v_0 = 0.1$, long-run average variance $\theta = 0.02$, rate of mean reversion $\kappa = 4$, instanteneous correlation $\rho = 0.8$ and volatility of volatility $\xi = 0.9$.(left: "Up-In"/right: "Up-Out")

Control Neighbors for Sliced-Wasserstein

• Compare standard Monte Carlo estimate (SW-MC) with the proposed control neighbors estimate (SW-CVNN) when computing the Sliced-Wasserstein distance between two Gaussian distributions $SW_2(P, Q)$.

• $P = \mathcal{N}_q(m_X, \sigma_X^2 \mathbf{I}_q)$ and $Q = \mathcal{N}_q(m_Y, \sigma_Y^2 \mathbf{I}_q)$, $m_X, m_Y \sim \mathcal{N}(0, \mathbf{I}_q)$ and $\sigma_X = 2$ and $\sigma_Y = 5$, empirical distributions P_m and Q_m based on $m = 2\,000$ samples, $n \in \{50; 100; 250; 500; 1000\}$.

15

• We have explored the use of **nearest neighbors** in the construction of control variates for variance reduction in Monte Carlo integration.

• We have shown that for Hölder integrands of regularity $s \in (0,1]$ on bounded metric spaces of dimension d as measured by a sufficiently regular probability distribution, a **faster rate of convergence**, in $\mathcal{O}(n^{-1/2}n^{-s/d})$ as $n \to \infty$, is possible through the construction of a control variate via leave-one-out neighbors.

• (**Theory**) Theoretical guarantees are given both in terms of bounds on the root mean squared error and as concentration inequalities (requiring an additional logarithmic factor).

• (**Practice**) In numerical experiments, the method enjoyed a notable error reduction with respect to Monte Carlo integration.

References

Bardenet, R. and A. Hardy (2020). Monte carlo with determinantal point processes. *The Annals of Applied Probability 30*(1), 368–417.

- Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517.
- Chopin, N. and M. Gerber (2024). Higher-order monte carlo through cubic stratification. *SIAM Journal on Numerical Analysis 62*(1), 229–247.
- Evans, M. and T. Swartz (2000). Approximating integrals via Monte Carlo and deterministic methods. Oxford Statistical Science Series. Oxford University Press, Oxford.
- Glasserman, P. (2004). Monte Carlo methods in financial engineering, Volume 53. New York, NY, USA: Springer.
- Haber, S. (1966). A modified monte-carlo quadrature. Mathematics of Computation 20(95), 361–368.

Bibliography ii

- Leluc, R., F. Portier, and J. Segers (2021, 07). Control variate selection for Monte Carlo integration. Statistics and Computing 31.
- Metropolis, N. and S. Ulam (1949). The monte carlo method. *Journal of the American* statistical association 44(247), 335–341.
- Novak, E. (2016). Some results on the complexity of numerical integration. In *Monte Carlo and Quasi-Monte Carlo Methods*, pp. 161–183. Springer.
- Oates, C. J., M. Girolami, and N. Chopin (2017). Control functionals for Monte Carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79(3), 695–718.
- Owen, A. B. (2013). Monte carlo theory, methods and examples.
- Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
 P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
 M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn: Machine learning in
 Python. Journal of Machine Learning Research 12, 2825–2830.
- Portier, F. and J. Segers (2019). Monte Carlo integration with a growing number of control variates. *Journal of Applied Probability* 56, 1168–1186.
- Robert, C. P. and G. Casella (1999). *Monte Carlo statistical methods* (Second ed.), Volume 2 of *Springer Texts in Statistics*. Springer.