Control Variate Selection for Monte Carlo Integration

Rémi LELUC

Ecole Polytechnique, Institut Polytechnique de Paris, France

Joint work with François Portier and Johan Segers, paper Published in *Statistics and Computing, 2021.*

Motivation: Machine Learning recent advances

"Intelligence"

Data + Models + **Algorithms** + Computing Power

Motivation: need for integral estimators

Central Question: Integration

Computation of an integral through probabilistic objective ${\cal F}$

$$\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(x)}[f(x)] = \int_{\mathcal{X}} f(x)\pi_{\theta}(x) \mathrm{d}x.$$
 (1)

Main issue: intractability and computational cost

• (RL) Trajectory $\tau = (s_0, a_0, \dots, s_{T-1}, a_{T-1})$ with policy π_{θ} and cumulative return $\mathcal{R}(\tau) = \sum_{t=0}^{T-1} \gamma^t r(s_t, a_t)$.

$$\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(\tau)}[\mathcal{R}(\tau)]$$

$$\mathsf{ELBO} = \mathcal{F}(\theta) = \mathbb{E}_{q_{\theta}(z|x)}[\log p(x|z)] - \mathsf{KL}(q_{\theta}(z|x)||p(z)).$$

(2016) AlphaGo A.I. beats champion Lee Sedol in Go.

Seasy and Practical

 \rightarrow Requires only three steps: sampling, evaluating, averaging

🕏 Randomness as a Strength

- \rightarrow Naturally escape local optima
- \rightarrow Complete exploration of the search space

Zarge-Scale learning

 \rightarrow simple, scalable, parallelizable

 \to in supervised learning, deterministic gradient scales as O(nd), stochastic version reduces to O(d) operations

Theoretical justifications¹

- \rightarrow deterministic methods $O(n^{-s/d})$
- \rightarrow optimal random procedure $O(n^{-1/2}n^{-s/d})$

¹(Novak, 2016): Some results on the complexity of numerical integration

Integration \mathcal{F}

Monte Carlo Integration & Variance Reduction

Monte Carlo integration

Underlying integration problem

Let $(\mathcal{X}, \mathcal{A}, \pi)$ be a probability space, $f : \mathcal{X} \to \mathbb{R}$ with $f \in L_2(\pi)$. • Goal:

$$\pi(f) := \int_{\mathcal{X}} f(x)\pi(\mathrm{d}x) = \mathbb{E}_{\pi}[f(X)].$$

• **Constraints:** f is unknown (black-box) or no approximation is sufficiently accurate, sampling from π may be hard.

Let $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \pi$, naive Monte Carlo estimator $\hat{\alpha}_n^{\text{mc}}(f)$ of $\pi(f)$ is

$$\hat{\alpha}_n^{\rm mc}(f) := \frac{1}{n} \sum_{i=1}^n f(X_i)$$
 (2)

Research Questions

- How to reduce the variance of Monte Carlo estimates?
- How to sample from π ? How to achieve optimal convergence rates?

Ref: Metropolis and Ulam (1949); Robert and Casella (1999); Evans and Swartz (2000); Glasserman (2004); Owen (2013); Novak (2016); Chopin and Gerber (2024)

Variance Reduction with Control Variates

Definition: Control Variates

Functions $h_1, \ldots, h_m \in L_2(\pi)$ with known integrals: $\forall 1 \leq j \leq m, \quad \mathbb{E}_{\pi}[h_j] = 0$

 \rightarrow Stein control variates, families of orthogonal polynomials

• Let $h = (h_1, \ldots, h_m)^{\top}$, for any $\beta \in \mathbb{R}^m$, we have $\mathbb{E}_{\pi}[f - \beta^{\top}h] = \mathbb{E}_{\pi}[f]$ leading to the CV estimate of α , parameterized by β

CV-Monte Carlo

$$\alpha_n^{(cv)}(f,\beta) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - \beta^\top h(X_i)), \quad X_1, \dots, X_n \sim \pi.$$

• What optimal choice for β^* ? Look at variance and define

$$\beta^* = \underset{\boldsymbol{\beta} \in \mathbb{R}^m}{\operatorname{arg\,min}} \mathbb{E}_{\pi} \left[(f - \pi(f) - \boldsymbol{\beta}^\top h)^2 \right]$$

From integration to linear regression

The integral $\pi(f)$ appears as the intercept of a linear regression model with response f and explanatory variables h_1, \ldots, h_m ,

 L_2 -orthogonal projection.

• The integral and oracle coefficient satisfy

$$(\pi(f), \beta^{\star}(f)) \in \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\arg\min} \pi[(f - \alpha - \beta^{\top} h)^2]$$
(3)

• Replacing the distribution π by the sample measure $\hat{\pi}_n$ gives the Ordinary Least Squares (OLS) estimate, $X_1, \ldots, X_n \sim \pi$

$$\left(\hat{\alpha}_{n}^{(\mathrm{cv})}, \hat{\beta}_{n}^{(\mathrm{cv})}\right) \in \operatorname*{arg\,min}_{(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}^{m}} \frac{1}{n} \sum_{i=1}^{n} \left(f(X_{i}) - \alpha - \beta^{\top} h(X_{i})\right)^{2} \quad (4)$$

Control Variates in the literature

Applications of control variates

- Finance (Gobet and Labart, 2010; Glasserman, 2004)
- Reinforcement Learning and policy-gradient methods (Jie and Abbeel, 2010; Liu et al., 2018)
- Inference in probabilistic models (Ranganath et al., 2014; Brosse et al., 2018; Belomestny et al., 2020)
- Gradient-based optimization (Wang et al., 2013; Gower et al., 2018)
- Time-series analysis (Davis et al., 2021) and semi-supervised inference (Zhang et al., 2019)

Theoretical results

• Stein method to build control functionals with non-parametric extension (Oates et al., 2017)

- Central Limit Theorem in the regime $m \to +\infty, n \to +\infty$ (Portier and Segers, 2019)
- Variance reduction via regularization (South et al., 2022)

From Ordinary Least Squares Monte Carlo...

Limitations of OLSMC.

- (*Overfitting*) Too many variables or/and few samples (case m >> n)
- (Collinearity) Dependence among variables \rightarrow very large coefficients How to avoid those problems ?

Bet on sparsity with variable selection!

Image generated by text-to-image A.I. midjourney with the command: "super-hero cowboy twirling his lasso in the air, comic-book style".

... to Lasso Monte-Carlo (LASSOMC/LSLASSO)

Control Variates estimates: OLS, LASSO, LSLASSO

$$\begin{pmatrix} \hat{\alpha}_n^{\text{ols}}(f), \hat{\beta}_n^{\text{ols}}(f) \end{pmatrix} = \underset{(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}^m}{\arg\min} \|f^{(n)} - \alpha \mathbb{1}_n - H\beta\|_2^2$$

$$\begin{pmatrix} \hat{\alpha}_n^{\text{lasso}}(f), \hat{\beta}_n^{\text{lasso}}(f) \end{pmatrix} = \underset{(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}^m}{\arg\min} \frac{1}{2n} \|f^{(n)} - \alpha \mathbb{1}_n - H\beta\|_2^2 + \lambda \|\beta\|_1$$

$$\begin{pmatrix} \hat{\alpha}_n^{\text{lslasso}}(f), \hat{\beta}_n^{\text{lslasso}}(f) \end{pmatrix} = \underset{(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}^{\hat{\ell}}}{\arg\min} \|f^{(n)} - \alpha \mathbb{1}_n - H_{\hat{S}}\beta\|_2^2$$

• Active set $S^{\star} = \{k: \beta_k^{\star} \neq 0\}$ and sparsity level $\ell^{\star} = Card(S^{\star})$

• LSLASSOMC: (1) $\hat{S} = \{k : \hat{\beta}_{N,k}^{\text{lasso}}(f) \neq 0\}$ estimated **active set** with LASSO (2) Solve subproblem **OLS** with selected control variates

Non-asymptotic Error Analysis

Assumptions: sub-gaussian residuals $\varepsilon = f - \pi(f) - \beta^{\star \top} h$ with factor τ .

Concentration inequalities

For $\delta \in (0,1)$ with probability at least $1-\delta$, for OLS, LASSO, LSLASSO

$$\hat{\alpha}_n^{\text{ols}}(f) - \pi(f) | \le \sqrt{2\log(8/\delta)} \frac{\tau}{\sqrt{n}} + C_1 \sqrt{Bm \log(8m/\delta)} \frac{\tau}{n}$$

$$|\hat{\alpha}_n^{\text{lasso}}(f) - \pi(f)| \le \sqrt{2\log(8/\delta)} \frac{\tau}{\sqrt{n}} + C_2(U_h^2/\gamma^*)\ell^* \log(8m/\delta) \frac{\tau}{n}$$

$$|\hat{\alpha}_n^{\text{lslasso}}(f) - \pi(f)| \le \sqrt{2\log(16/\delta)} \frac{\tau}{\sqrt{n}} + C_3 \sqrt{B^*\ell^* \log(16\ell^*/\delta)} \frac{\tau}{n}$$

$$U_h = \max_{j=1,...,m} \|h_j\|_{\infty}$$

$$G = \mathbb{E}_{\pi}[hh^{\top}], \gamma = \lambda_{\min}(G), \hbar = G^{-1/2}h; B = \sup_x \|\hbar(x)\|_2^2$$

$$G^*, \gamma^*, B^* \text{ restricted on active set}$$

Illustrative examples

Fourier On $\mathcal{X} = [0, 1]$ equipped with the uniform distribution P, let $h_j(x)$ be equal to $\sqrt{2}\cos((j+1)\pi x)$ is j is odd and to $\sqrt{2}\sin(j\pi x)$ is j is even. $G = I_m, \gamma = \gamma^* = 1, U_h = U_h^* = \sqrt{2}, \zeta_h = \zeta_h^* = 2.$

 $|\hat{\alpha}_n^{\text{lslasso}}(f) - P(f)| \le \sqrt{2\log(16/\delta)} + 83\ell^* \sqrt{\log(16\ell^*/\delta)\log(8/\delta)} \frac{\tau}{n}.$

Polynomials Suppose that for all $j = 1, ..., m, h_j = L_j$ is the Legendre polynomial of degree j.

The Gram matrix $G = P(hh^T)$ is diagonal with entries 1/(2j+1) and $\gamma = 1/(2m+1)$.

$$\begin{aligned} |\hat{\alpha}_n^{\text{lslasso}}(f) - P(f)| &\leq \\ \sqrt{2\log(16/\delta)} + 58\sqrt{(2\ell^* + 1)\ell^*\log(16\ell^*/\delta)\log(8/\delta)}\frac{\tau}{n}. \end{aligned}$$

Numerical experiments

- h_j(x) = L_j(2x − 1) for x ∈ [0, 1], with L_j the univariate Legendre polynomial (Legendre function of the first kind) of degree j.
- For a multi-index $\ell = (\ell_1, \dots, \ell_d)$ in $\{0, 1, \dots, k\}^d \setminus \{(0, \dots, 0)\}$, build

$$h_{\ell}(x_1, \dots, x_d) = \prod_{j=1}^d h_{\ell_j}(x_j) = h_{\ell_1}(x_1) \times \dots \times h_{\ell_d}(x_d)$$

• Sort in ascending order according to the total degree $\sum_{j=1}^{d} \ell_j$.

d	k	Degree threshold						
		1	3	5	10	12		
3	12	3	19	55	285	454		
5	10	5	55	251	3 001	6 157		
8	3	8	164	1 214	20 993	36 813		

Number of control variates by degrees

- λ is selected by imposing a lower bound and an upper bound on the number of activated random variables \rightarrow **dichotomic search**.
- initialize $\lambda = \lambda_{max}$ and decrease it to have more and more control variates until their number lies in the range $[c_1\sqrt{n}, c_2\sqrt{n}]$.

n	N	$\lfloor 3\sqrt{n} \rfloor$	$\lfloor 12\sqrt{n} \rfloor$
2 000	700	134	536
5 000	1 000	212	848
10 000	2 000	300	1 200

Parameters setting with range $(c_1\sqrt{n}, c_2\sqrt{n})$ of selected control variates.

Evidence Estimation in Bayesian Models

• Model likelihood $\ell(x|\theta)$ and prior distribution $\pi(\theta)$, compute evidence

$$Z = \int_{\Theta} \ell(x|\theta) \pi(\theta) \mathrm{d}\theta$$

²(Marzolin, 1988; Gorman and Sejnowski, 1988)

LASSOMC: Capture/Sonar experiments

m =	90	444	1062	3 0 9 0	5730
OLS	8.23	10.3	5.21	0.01	5e-3
LASSO	7.84	10.5	5.88	2.80	0.85
LSL	7.70	10.4	4.54	1.42	0.43
LSLX	7.59	9.77	7.58	2.73	1.04

Capture data: global efficiency (n = 2000)

m =	61	183	305	610	1220
OLS	0.27	0.33	3.87	4.68	1.47
LASSO	0.27	0.35	3.96	5.55	3.00
LSL	0.26	0.33	3.85	4.90	2.19
LSLX	0.26	0.35	3.80	4.81	3.17

Sonar data: global efficiency (n = 2000)

m =	90	444	1062	3 0 9 0	5730
OLS	5.21	9.56	8.31	1.28	3e-3
LASSO	5.16	9.69	8.59	4.87	1.72
LSL	5.16	9.59	7.88	2.49	0.59
LSLX	5.15	9.55	8.15	4.51	1.72

Capture data: global efficiency (n = 5000)

m =	61	183	305	610	1220
OLS	0.29	0.41	3.66	6.70	2.57
LASSO	0.28	0.41	3.73	6.85	3.10
LSL	0.28	0.41	3.56	6.66	2.68
LSLX	0.28	0.41	3.70	6.95	3.17

Sonar data: global efficiency (n = 5000)

• The use of high-dimensional control variates with the help of a LASSOtype procedure has been shown to be efficient in order to reduce the variance of the basic Monte Carlo estimate.

• The method, called LSLASSO(X), that first selects appropriate control variates by the LASSO, possibly on a smaller subsample, and then estimates the control variate coefficients by least squares performs excellently considering the modest computing time required.

• Future work on debiasing methods for LASSO-based procedures, sample splitting and construction of control variates in adaptive sampling frame-work.

References

- Belomestny, D., L. Iosipoi, E. Moulines, A. Naumov, and S. Samsonov (2020). Variance reduction for Markov chains with application to MCMC. *Statistics and Computing 30*, 973–997.
- Brosse, N., A. Durmus, S. Meyn, É. Moulines, and A. Radhakrishnan (2018). Diffusion approximations and control variates for MCMC. arXiv preprint arXiv:1808.01665.
- Chopin, N. and M. Gerber (2024). Higher-order monte carlo through cubic stratification. *SIAM Journal on Numerical Analysis 62*(1), 229–247.
- Davis, R., T. do Rego Sousa, and C. Klüppelberg (2021, 01). Indirect inference for time series using the empirical characteristic function and control variates. *Journal* of *Time Series Analysis 42*.
- Evans, M. and T. Swartz (2000). Approximating integrals via Monte Carlo and deterministic methods. Oxford Statistical Science Series. Oxford University Press, Oxford.
- Glasserman, P. (2004). Monte Carlo methods in financial engineering, Volume 53. New York, NY, USA: Springer.

Bibliography ii

- Gobet, E. and C. Labart (2010). Solving bsde with adaptive control variate. SIAM Journal on Numerical Analysis 48(1), 257–277.
- Gorman, R. P. and T. J. Sejnowski (1988). Analysis of hidden units in a layered network trained to classify sonar targets. *Neural networks* 1(1), 75–89.
- Gower, R., N. Le Roux, and F. Bach (2018). Tracking the gradients using the hessian: a new look at variance reducing stochastic methods. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, Canary Islands, Spain, pp. 707–715. PMLR.
- Jie, T. and P. Abbeel (2010). On a connection between importance sampling and the likelihood ratio policy gradient. In Advances in Neural Information Processing Systems, Volume 23. Curran Associates, Inc.
- Liu, H., Y. Feng, Y. Mao, D. Zhou, J. Peng, and Q. Liu (2018, February). Actiondependent control variates for policy optimization via stein identity. In *ICLR 2018 Conference* (ICLR 2018 Conference ed.).
- Marzolin, G. (1988). Polygynie du Cincle plongeur (Cinclus cinclus) dans les côtes de Lorraine. Oiseau et la Revue Francaise d'Ornithologie 58(4), 277–286.

Bibliography iii

- Metropolis, N. and S. Ulam (1949). The monte carlo method. *Journal of the American* statistical association 44(247), 335–341.
- Novak, E. (2016). Some results on the complexity of numerical integration. In *Monte Carlo and Quasi-Monte Carlo Methods*, pp. 161–183. Springer.
- Oates, C. J., M. Girolami, and N. Chopin (2017). Control functionals for Monte Carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79(3), 695–718.
- Owen, A. B. (2013). Monte carlo theory, methods and examples.
- Portier, F. and J. Segers (2019). Monte Carlo integration with a growing number of control variates. *Journal of Applied Probability* 56, 1168–1186.
- Ranganath, R., S. Gerrish, and D. Blei (2014, 22–25 Apr). Black box variational inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Volume 33, Reykjavik, Iceland, pp. 814–822. PMLR.
- Robert, C. P. and G. Casella (1999). *Monte Carlo statistical methods* (Second ed.), Volume 2 of *Springer Texts in Statistics*. Springer.
- South, L., C. Oates, A. Mira, and C. Drovandi (2022). Regularized zero-variance control variates. *Bayesian Analysis* 1(1), 1–24.

- Wang, C., X. Chen, A. Smola, and E. Xing (2013). Variance reduction for stochastic gradient optimization. In Advances in Neural Information Processing Systems, Volume 26. Curran Associates, Inc.
- Zhang, A., L. D. Brown, and T. T. Cai (2019). Semi-supervised inference: General theory and estimation of means. *The Annals of Statistics* 47(5), 2538–2566.