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Motivation: Machine Learning recent advances

AlphaGo (2016) AlphaFold (2018) GPT-3/4(2020/2023)

"Intelligence"
=

Data + Models + Algorithms + Computing Power
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Motivation: need for integral estimators

Central Question: Integration

Computation of an integral through probabilistic objective F

F(θ) = Eπθ(x)[f(x)] =

∫
X
f(x)πθ(x)dx. (1)

Main issue: intractability and computational cost
• (RL) Trajectory τ = (s0, a0, . . . , sT−1, aT−1) with policy πθ

and cumulative return R(τ) =
∑T−1

t=0 γtr(st, at).

F(θ) = Eπθ(τ)[R(τ)]

• (VI) F optimises the log-likelihood log p(x|z) under a regular-
ization constraint which promotes closeness between the density
q and the prior distribution p(z)

ELBO = F(θ) = Eqθ(z|x)[log p(x|z)]− KL(qθ(z|x)||p(z)).

(2016) AlphaGo A.I.
beats champion Lee
Sedol in Go.
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Advantages of Random estimates

Easy and Practical
→ Requires only three steps: sampling, evaluating, averaging

Randomness as a Strength
→ Naturally escape local optima
→ Complete exploration of the search space

Large-Scale learning
→ simple, scalable, parallelizable
→ in supervised learning, deterministic gradient scales as O(nd), stochastic
version reduces to O(d) operations

Theoretical justifications1

→ deterministic methods O(n−s/d)

→ optimal random procedure O(n−1/2n−s/d)

1(Novak, 2016): Some results on the complexity of numerical integration
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Integration F
Monte Carlo Integration & Variance Reduction
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Monte Carlo integration

Underlying integration problem

Let (X ,A, π) be a probability space, f : X → R with f ∈ L2(π).
• Goal:

π(f) :=

∫
X
f(x)π(dx) = Eπ[f(X)].

• Constraints: f is unknown (black-box) or no approximation is
sufficiently accurate, sampling from π may be hard.

Let X1, ..., Xn
i.i.d.∼ π, naive Monte Carlo estimator α̂mc

n (f) of π(f) is

α̂mc
n (f) :=

1

n

n∑
i=1

f(Xi) (2)

Research Questions
• How to reduce the variance of Monte Carlo estimates?
• How to sample from π? • How to achieve optimal convergence rates?

Ref: Metropolis and Ulam (1949); Robert and Casella (1999); Evans and Swartz (2000);
Glasserman (2004); Owen (2013); Novak (2016); Chopin and Gerber (2024) 6



Variance Reduction with Control Variates

Definition: Control Variates
Functions h1, . . . , hm ∈ L2(π) with known integrals:

∀1 ≤ j ≤ m, Eπ[hj ] = 0

→ Stein control variates, families of orthogonal polynomials

• Let h = (h1, . . . , hm)⊤, for any β ∈ Rm, we have Eπ[f −β⊤h] = Eπ[f ]

leading to the CV estimate of α, parameterized by β

CV-Monte Carlo

α(cv)
n (f, β) =

1

n

n∑
i=1

(
f(Xi)− β⊤h(Xi)

)
, X1, . . . , Xn ∼ π.

• What optimal choice for β∗ ? Look at variance and define

β∗ = argmin
β∈Rm

Eπ

[
(f − π(f)− β⊤h)2

]
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Integration with Linear regression

From integration to linear regression

The integral π(f) appears as the intercept
of a linear regression model with response
f and explanatory variables h1, . . . , hm,

L2-orthogonal projection.

• The integral and oracle coefficient satisfy

(π(f), β⋆(f)) ∈ argmin
(α,β)∈R×Rm

π[(f − α− β⊤h)2] (3)

• Replacing the distribution π by the sample measure π̂n gives the Ordi-

nary Least Squares (OLS) estimate, X1, . . . , Xn ∼ π(
α̂(cv)
n , β̂

(cv)

n

)
∈ argmin

(α,β)∈R×Rm

1

n

n∑
i=1

(
f(Xi)− α− β⊤h(Xi)

)2 (4)
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Control Variates in the literature

Applications of control variates

• Finance (Gobet and Labart, 2010; Glasserman, 2004)
• Reinforcement Learning and policy-gradient methods (Jie and Abbeel,
2010; Liu et al., 2018)
• Inference in probabilistic models (Ranganath et al., 2014; Brosse et al.,
2018; Belomestny et al., 2020)
• Gradient-based optimization (Wang et al., 2013; Gower et al., 2018)
• Time-series analysis (Davis et al., 2021) and semi-supervised inference
(Zhang et al., 2019)

Theoretical results
• Stein method to build control functionals with non-parametric
extension (Oates et al., 2017)
• Central Limit Theorem in the regime m → +∞, n → +∞ (Portier and
Segers, 2019)
• Variance reduction via regularization (South et al., 2022)
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From Ordinary Least Squares Monte Carlo...

Limitations of OLSMC.
• (Overfitting) Too many variables or/and few samples (case m >> n)
• (Collinearity) Dependence among variables → very large coefficients

How to avoid those problems ?

Bet on sparsity with variable selection!

Image generated by text-to-image A.I. midjourney with the command:
”super-hero cowboy twirling his lasso in the air, comic-book style”. 10



... to Lasso Monte-Carlo (LASSOMC/LSLASSO)

Control Variates estimates: OLS, LASSO, LSLASSO

(
α̂ols
n (f), β̂ols

n (f)
)
= argmin

(α,β)∈R×Rm

∥f (n) − α1n −Hβ∥22(
α̂lasso
n (f), β̂lasso

n (f)
)
= argmin

(α,β)∈R×Rm

1

2n
∥f (n) − α1n −Hβ∥22 + λ∥β∥1(

α̂lslasso
n (f), β̂lslasso

n (f)
)
= argmin

(α,β)∈R×Rℓ̂

∥f (n) − α1n −HŜβ∥
2
2

• Active set S⋆ = {k : β⋆
k ̸= 0} and sparsity level ℓ⋆ = Card(S⋆)

• LSLASSOMC:
(1) Ŝ = {k : β̂lasso

N,k (f) ̸= 0} estimated active set with LASSO
(2) Solve subproblem OLS with selected control variates
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Non-asymptotic Error Analysis

Assumptions: sub-gaussian residuals ε = f − π(f)− β⋆⊤h with factor τ .

Concentration inequalities

For δ ∈ (0, 1) with probability at least 1− δ, for OLS, LASSO, LSLASSO

|α̂ols
n (f)− π(f)| ≤

√
2 log(8/δ)

τ√
n
+ C1

√
Bm log(8m/δ)

τ

n

|α̂lasso
n (f)− π(f)| ≤

√
2 log(8/δ)

τ√
n
+ C2(U

2
h/γ

⋆)ℓ⋆ log(8m/δ)
τ

n

|α̂lslasso
n (f)− π(f)| ≤

√
2 log(16/δ)

τ√
n
+ C3

√
B⋆ℓ⋆ log(16ℓ⋆/δ)

τ

n

Uh = max
j=1,...,m

∥hj∥∞
G = Eπ[hh

⊤], γ = λmin(G), ℏ = G−1/2h;B = supx ∥ℏ(x)∥22
G⋆, γ⋆, B⋆ restricted on active set
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Illustrative examples

Fourier On X = [0, 1] equipped with the uniform distribution P , let hj(x)

be equal to
√
2 cos((j +1)πx) is j is odd and to

√
2 sin(jπx) is j is even.

G = Im, γ = γ⋆ = 1, Uh = U⋆
h =

√
2, ζh = ζ⋆h = 2.

|α̂lslasso
n (f)− P (f)| ≤

√
2 log(16/δ) + 83ℓ⋆

√
log(16ℓ⋆/δ) log(8/δ)

τ

n
.

Polynomials Suppose that for all j = 1, . . . ,m, hj = Lj is the Legendre
polynomial of degree j.

The Gram matrix G = P (hhT ) is diagonal with entries 1/(2j + 1) and
γ = 1/(2m+ 1).

|α̂lslasso
n (f)− P (f)| ≤√
2 log(16/δ) + 58

√
(2ℓ⋆ + 1)ℓ⋆ log(16ℓ⋆/δ) log(8/δ)

τ

n
.
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Numerical experiments

• hj(x) = Lj(2x− 1) for x ∈ [0, 1], with Lj the univariate Legendre
polynomial (Legendre function of the first kind) of degree j.

• For a multi-index ℓ = (ℓ1, . . . , ℓd) in {0, 1, . . . , k}d \ {(0, . . . , 0)},
build

hℓ(x1, . . . , xd) =

d∏
j=1

hℓj (xj) = hℓ1(x1)× . . .× hℓd(xd)

• Sort in ascending order according to the total degree
∑d

j=1 ℓj .

d k
Degree threshold

1 3 5 10 12
3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Number of control variates by degrees
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Numerical experiments

• λ is selected by imposing a lower bound and an upper bound on the
number of activated random variables → dichotomic search.

• initialize λ = λmax and decrease it to have more and more control
variates until their number lies in the range [c1

√
n, c2

√
n].

n N ⌊3
√
n⌋ ⌊12

√
n⌋

2 000 700 134 536
5 000 1 000 212 848
10 000 2 000 300 1 200

Parameters setting with range (c1
√
n, c2

√
n) of selected control variates.
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Evidence Estimation in Bayesian Models

• Model likelihood ℓ(x|θ) and prior distribution π(θ), compute evidence

Z =

∫
Θ

ℓ(x|θ)π(θ)dθ

m=0
(Vanilla)

deg<=2
m=90

deg<=4
m=444

deg<=6
m=1062

deg<=10
m=3090

deg<=15
m=5730

0.985

0.990

0.995

1.000

1.005

1.010

OLS
Lasso
LSLasso
LSLassoX

m=0
(Vanilla)

deg<=1
m=61

deg<=3
m=183

deg<=5
m=305

deg<=10
m=610

deg<=20
m=1220

0.96

0.98

1.00

1.02

1.04
OLS
Lasso
LSLasso
LSLassoX

Boxplots of Error Distribution for Capture (d = 12) and Sonar (d = 61) datasets2 ,
n = 5000;N = 1000, obtained over 100 replications.

2(Marzolin, 1988; Gorman and Sejnowski, 1988)
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LASSOMC: Capture/Sonar experiments

m = 90 444 1 062 3 090 5 730

OLS 8.23 10.3 5.21 0.01 5e-3

LASSO 7.84 10.5 5.88 2.80 0.85

LSL 7.70 10.4 4.54 1.42 0.43

LSLX 7.59 9.77 7.58 2.73 1.04

Capture data: global efficiency
(n = 2000)

m = 61 183 305 610 1220

OLS 0.27 0.33 3.87 4.68 1.47

LASSO 0.27 0.35 3.96 5.55 3.00

LSL 0.26 0.33 3.85 4.90 2.19

LSLX 0.26 0.35 3.80 4.81 3.17

Sonar data: global efficiency
(n = 2000)

m = 90 444 1 062 3 090 5 730

OLS 5.21 9.56 8.31 1.28 3e-3

LASSO 5.16 9.69 8.59 4.87 1.72

LSL 5.16 9.59 7.88 2.49 0.59

LSLX 5.15 9.55 8.15 4.51 1.72

Capture data: global efficiency
(n = 5000)

m = 61 183 305 610 1220

OLS 0.29 0.41 3.66 6.70 2.57

LASSO 0.28 0.41 3.73 6.85 3.10

LSL 0.28 0.41 3.56 6.66 2.68

LSLX 0.28 0.41 3.70 6.95 3.17

Sonar data: global efficiency
(n = 5000)
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Conclusion

• The use of high-dimensional control variates with the help of a LASSO-
type procedure has been shown to be efficient in order to reduce the vari-
ance of the basic Monte Carlo estimate.

• The method, called LSLASSO(X), that first selects appropriate control
variates by the LASSO, possibly on a smaller subsample, and then esti-
mates the control variate coefficients by least squares performs excellently
considering the modest computing time required.

• Future work on debiasing methods for LASSO-based procedures, sample
splitting and construction of control variates in adaptive sampling frame-
work.
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