Control Variate Selection for Monte Carlo Integration

Rémi LELUC

Ecole Polytechnique, Institut Polytechnique de Paris, France

Joint work with François Portier and Johan Segers, [paper](https://rdcu.be/cnesX) Published in Statistics and Computing, 2021.

Motivation: Machine Learning recent advances

"Intelligence"

= Data + Models + $\overline{Algorithms}$ + Computing Power

Motivation: need for integral estimators

Central Question: Integration

Computation of an *integral* through probabilistic objective F

$$
\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(x)}[f(x)] = \int_{\mathcal{X}} f(x)\pi_{\theta}(x)dx.
$$
 (1)

Main issue: intractability and computational cost

• (RL) Trajectory $\tau = (s_0, a_0, \ldots, s_{T-1}, a_{T-1})$ with policy π_θ and cumulative return $\mathcal{R}(\tau) = \sum_{t=0}^{T-1} \gamma^t r(s_t, a_t)$.

$$
\mathcal{F}(\theta) = \mathbb{E}_{\pi_{\theta}(\tau)}[\mathcal{R}(\tau)]
$$

$$
\mathsf{ELBO} = \mathcal{F}(\theta) = \mathbb{E}_{q_{\theta}(z|x)}[\log p(x|z)] - \mathsf{KL}(q_{\theta}(z|x)||p(z)).
$$

(2016) AlphaGo A.I. beats champion Lee Sedol in Go.

Easy and Practical

 \rightarrow Requires only three steps: sampling, evaluating, averaging

Randomness as a Strength

- \rightarrow Naturally escape local optima
- \rightarrow Complete exploration of the search space

Large-Scale learning

 \rightarrow simple, scalable, parallelizable

 \rightarrow in supervised learning, deterministic gradient scales as $O(nd)$, stochastic version reduces to $O(d)$ operations

Theoretical justifications¹

- \rightarrow deterministic methods $O(n^{-s/d})$
- \rightarrow optimal random procedure $O(n^{-1/2}n^{-s/d})$

¹[\(Novak, 2016\)](#page-20-0): Some results on the complexity of numerical integration

Integration F

Monte Carlo Integration & Variance Reduction

Monte Carlo integration

Underlying integration problem

Let (X, \mathcal{A}, π) be a probability space, $f : \mathcal{X} \to \mathbb{R}$ with $f \in L_2(\pi)$. • Goal:

$$
\pi(f) := \int_{\mathcal{X}} f(x)\pi(\mathrm{d}x) = \mathbb{E}_{\pi}[f(X)].
$$

• Constraints: f is unknown (black-box) or no approximation is sufficiently accurate, sampling from π may be hard.

Let $X_1,...,X_n \stackrel{\textup{i.i.d.}}{\sim} \pi$, naive Monte Carlo estimator $\hat{\alpha}_n^{\mathrm{mc}}(f)$ of $\pi(f)$ is $\hat{\alpha}_n^{\mathrm{mc}}(f) := \frac{1}{n}$ $\sum_{i=1}^{n} f(X_i)$ (2) $i=1$

Research Questions

- How to reduce the variance of Monte Carlo estimates?
- How to sample from π ? How to achieve optimal convergence rates?

Ref: [Metropolis and Ulam \(1949\)](#page-20-1); [Robert and Casella \(1999\)](#page-20-2); [Evans and Swartz \(2000\)](#page-18-0); [Glasserman \(2004\)](#page-18-1); [Owen \(2013\)](#page-20-3); [Novak \(2016\)](#page-20-0); [Chopin and Gerber \(2024\)](#page-18-2)

Variance Reduction with Control Variates

Definition: Control Variates

Functions $h_1, \ldots, h_m \in L_2(\pi)$ with known integrals: $\forall 1 \leq j \leq m$, $\mathbb{E}_{\pi}[h_j] = 0$

 \rightarrow Stein control variates, families of orthogonal polynomials

 \bullet Let $h=(h_1,\ldots,h_m)^\top$, for any $\beta\in\mathbb{R}^m$, we have $\mathbb{E}_\pi[f-\beta^\top h]=\mathbb{E}_\pi[f]$ leading to the CV estimate of α , parameterized by β

CV-Monte Carlo

$$
\alpha_n^{(\text{cv})}(f,\beta) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - \beta^\top h(X_i)), \quad X_1, \dots, X_n \sim \pi.
$$

• What optimal choice for β^* ? Look at variance and define

$$
\beta^* = \underset{\beta \in \mathbb{R}^m}{\arg \min} \mathbb{E}_{\pi} \left[(f - \pi(f) - \beta^{\top} h)^2 \right]
$$

From integration to linear regression

The integral $\pi(f)$ appears as the intercept of a linear regression model with response f and explanatory variables h_1, \ldots, h_m ,

• The integral and oracle coefficient satisfy

$$
(\pi(f), \beta^*(f)) \in \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\text{arg min}} \pi[(f - \alpha - \beta^\top h)^2]
$$
 (3)

• Replacing the distribution π by the sample measure $\hat{\pi}_n$ gives the **Ordi**nary Least Squares (OLS) estimate, $X_1, \ldots, X_n \sim \pi$

$$
(\hat{\alpha}_n^{(\text{cv})}, \hat{\beta}_n^{(\text{cv})}) \in \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\arg \min} \frac{1}{n} \sum_{i=1}^n (f(X_i) - \alpha - \beta^\top h(X_i))^2 \qquad (4)
$$

Control Variates in the literature

Applications of control variates

- Finance [\(Gobet and Labart, 2010;](#page-19-0) [Glasserman, 2004\)](#page-18-1)
- Reinforcement Learning and policy-gradient methods [\(Jie and Abbeel,](#page-19-1) [2010;](#page-19-1) [Liu et al., 2018\)](#page-19-2)
- Inference in probabilistic models [\(Ranganath et al., 2014;](#page-20-4) [Brosse et al.,](#page-18-3) [2018;](#page-18-3) [Belomestny et al., 2020\)](#page-18-4)
- Gradient-based optimization [\(Wang et al., 2013;](#page-21-0) [Gower et al., 2018\)](#page-19-3)
- Time-series analysis [\(Davis et al., 2021\)](#page-18-5) and semi-supervised inference [\(Zhang et al., 2019\)](#page-21-1)

Theoretical results

• Stein method to build control functionals with non-parametric extension [\(Oates et al., 2017\)](#page-20-5)

- Central Limit Theorem in the regime $m \to +\infty$, $n \to +\infty$ [\(Portier and](#page-20-6) [Segers, 2019\)](#page-20-6)
- Variance reduction via regularization [\(South et al., 2022\)](#page-20-7)

Limitations of OLSMC.

- (Overfitting) Too many variables or/and few samples (case $m >> n$)
- (Collinearity) Dependence among variables \rightarrow very large coefficients How to avoid those problems ?

Bet on sparsity with variable selection!

Image generated by text-to-image A.I. midjourney with the command: "super-hero cowboy twirling his lasso in the air, comic-book style". 10

... to Lasso Monte-Carlo (LASSOMC/LSLASSO)

Control Variates estimates: OLS, LASSO, LSLASSO

$$
(\hat{\alpha}_n^{\text{ols}}(f), \hat{\beta}_n^{\text{ols}}(f)) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\arg \min} ||f^{(n)} - \alpha \mathbb{1}_n - H\beta||_2^2
$$

$$
(\hat{\alpha}_n^{\text{lasso}}(f), \hat{\beta}_n^{\text{lasso}}(f)) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^m}{\arg \min} \frac{1}{2n} ||f^{(n)} - \alpha \mathbb{1}_n - H\beta||_2^2 + \lambda ||\beta||_1
$$

$$
(\hat{\alpha}_n^{\text{islasso}}(f), \hat{\beta}_n^{\text{islasso}}(f)) = \underset{(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^{\hat{\ell}}}{\arg \min} ||f^{(n)} - \alpha \mathbb{1}_n - H_{\hat{S}}\beta||_2^2
$$

• Active set $S^* = \{k : \beta_k^* \neq 0\}$ and sparsity level $\ell^* = Card(S^*)$

• LSLASSOMC: (1) $\hat{S} = \{k : \hat{\beta}_{N,k}^{\text{lasso}}(f) \neq 0\}$ estimated active set with <code>LASSO</code> (2) Solve subproblem OLS with selected control variates

Non-asymptotic Error Analysis

Assumptions: $\mathsf{sub}\text{-}\mathsf{gaussian}$ residuals $\varepsilon = f - \pi(f) - \beta^{\star\top} h$ with factor $\tau.$

Concentration inequalities

For $\delta \in (0,1)$ with probability at least $1 - \delta$, for OLS, LASSO, LSLASSO

$$
|\hat{\alpha}_n^{\text{ols}}(f) - \pi(f)| \le \sqrt{2\log(8/\delta)} \frac{\tau}{\sqrt{n}} + C_1 \sqrt{Bm \log(8m/\delta)} \frac{\tau}{n}
$$

$$
|\hat{\alpha}_n^{\mathrm{lasso}}(f) - \pi(f)| \leq \sqrt{2\log(8/\delta)} \frac{\tau}{\sqrt{n}} + C_2(U_h^2/\gamma^{\star}) \ell^{\star} \log(8m/\delta) \frac{\tau}{n}
$$

$$
|\hat{\alpha}_n^{\text{Islasso}}(f) - \pi(f)| \le \sqrt{2\log(16/\delta)} \frac{\tau}{\sqrt{n}} + C_3 \sqrt{B^{\star}\ell^{\star}\log(16\ell^{\star}/\delta)} \frac{\tau}{n}
$$

$$
U_h = \max_{j=1,\dots,m} \|h_j\|_{\infty}
$$

\n
$$
G = \mathbb{E}_{\pi}[hh^{\top}], \gamma = \lambda_{\min}(G), \hbar = G^{-1/2}h; B = \sup_x \|\hbar(x)\|_2^2
$$

\n
$$
G^{\star}, \gamma^{\star}, B^{\star} \text{ restricted on active set}
$$

Illustrative examples

Fourier On $\mathcal{X} = [0, 1]$ equipped with the uniform distribution P, let $h_i(x)$ be equal to $\sqrt{2}\cos((j+1)\pi x)$ is j is odd and to $\sqrt{2}\sin(j\pi x)$ is j is even. $G = I_m$, $\gamma = \gamma^* = 1$, $U_h = U_h^* =$ √ $\overline{2}, \zeta_h = \zeta_h^* = 2.$

$$
|\hat{\alpha}_n^{\text{islasso}}(f) - P(f)| \leq \sqrt{2\log(16/\delta)} + 83\ell^{\star}\sqrt{\log(16\ell^{\star}/\delta)\log(8/\delta)}\frac{\tau}{n}.
$$

Polynomials Suppose that for all $j = 1, ..., m, h_j = L_j$ is the Legendre polynomial of degree i .

The Gram matrix $G=P(hh^T)$ is diagonal with entries $1/(2j+1)$ and $\gamma = 1/(2m + 1).$

$$
\begin{aligned} |\hat{\alpha}_n^{\text{Islasso}}(f) - P(f)| &\leq\\ \sqrt{2\log(16/\delta)} + 58\sqrt{(2\ell^{\star} + 1)\ell^{\star}\log(16\ell^{\star}/\delta)\log(8/\delta)}\frac{\tau}{n}.\end{aligned}
$$

Numerical experiments

- $h_i(x) = L_i(2x 1)$ for $x \in [0, 1]$, with L_i the univariate Legendre polynomial (Legendre function of the first kind) of degree i .
- For a multi-index $\ell = (\ell_1, \ldots, \ell_d)$ in $\{0, 1, \ldots, k\}^d \setminus \{(0, \ldots, 0)\},$ build

$$
h_{\ell}(x_1, ..., x_d) = \prod_{j=1}^d h_{\ell_j}(x_j) = h_{\ell_1}(x_1) \times ... \times h_{\ell_d}(x_d)
$$

 $\bullet\,$ Sort in ascending order according to the total degree $\sum_{j=1}^d \ell_j.$

Number of control variates by degrees

Numerical experiments

- λ is selected by imposing a lower bound and an upper bound on the number of activated random variables \rightarrow dichotomic search.
- initialize $\lambda = \lambda_{max}$ and decrease it to have more and more control variates until their number lies in the range $[c_1\sqrt{n}, c_2\sqrt{n}]$.

Parameters setting with range $(c_1\sqrt{n}, c_2\sqrt{n})$ of selected control variates.

Evidence Estimation in Bayesian Models

• Model likelihood $\ell(x|\theta)$ and prior distribution $\pi(\theta)$, compute evidence

$$
Z = \int_{\Theta} \ell(x|\theta) \pi(\theta) \mathrm{d}\theta
$$

² [\(Marzolin, 1988;](#page-19-4) [Gorman and Sejnowski, 1988\)](#page-19-5)

LASSOMC: Capture/Sonar experiments

Capture data: global efficiency $(n = 2000)$

Sonar data: global efficiency $(n = 2000)$

Capture data: global efficiency $(n = 5000)$

Sonar data: global efficiency $(n = 5000)$

• The use of high-dimensional control variates with the help of a LASSOtype procedure has been shown to be efficient in order to reduce the variance of the basic Monte Carlo estimate.

• The method, called LSLASSO(X), that first selects appropriate control variates by the LASSO, possibly on a smaller subsample, and then estimates the control variate coefficients by least squares performs excellently considering the modest computing time required.

• Future work on debiasing methods for LASSO-based procedures, sample splitting and construction of control variates in adaptive sampling framework.

[References](#page-18-6)

- Belomestny, D., L. Iosipoi, E. Moulines, A. Naumov, and S. Samsonov (2020). Variance reduction for Markov chains with application to MCMC. Statistics and Computing 30, 973–997.
- Brosse, N., A. Durmus, S. Meyn, É. Moulines, and A. Radhakrishnan (2018). Diffusion approximations and control variates for MCMC. arXiv preprint arXiv:1808.01665.
- Chopin, N. and M. Gerber (2024). Higher-order monte carlo through cubic stratification. SIAM Journal on Numerical Analysis 62(1), 229–247.
- Davis, R., T. do Rego Sousa, and C. Klüppelberg (2021, 01). Indirect inference for time series using the empirical characteristic function and control variates. Journal of Time Series Analysis 42.
- Evans, M. and T. Swartz (2000). Approximating integrals via Monte Carlo and deterministic methods. Oxford Statistical Science Series. Oxford University Press, Oxford.
- Glasserman, P. (2004). Monte Carlo methods in financial engineering, Volume 53. New York, NY, USA: Springer.

Bibliography ii

- Gobet, E. and C. Labart (2010). Solving bsde with adaptive control variate. SIAM Journal on Numerical Analysis 48(1), 257–277.
- Gorman, R. P. and T. J. Sejnowski (1988). Analysis of hidden units in a layered network trained to classify sonar targets. Neural networks $1(1)$, 75-89.
- Gower, R., N. Le Roux, and F. Bach (2018). Tracking the gradients using the hessian: a new look at variance reducing stochastic methods. In International Conference on Artificial Intelligence and Statistics (AISTATS), Canary Islands, Spain, pp. 707–715. PMLR.
- Jie, T. and P. Abbeel (2010). On a connection between importance sampling and the likelihood ratio policy gradient. In Advances in Neural Information Processing Systems, Volume 23. Curran Associates, Inc.
- Liu, H., Y. Feng, Y. Mao, D. Zhou, J. Peng, and Q. Liu (2018, February). Actiondependent control variates for policy optimization via stein identity. In ICLR 2018 Conference (ICLR 2018 Conference ed.).
- Marzolin, G. (1988). Polygynie du Cincle plongeur (Cinclus cinclus) dans les côtes de Lorraine. Oiseau et la Revue Francaise d'Ornithologie 58(4), 277–286.

Bibliography iii

- Metropolis, N. and S. Ulam (1949). The monte carlo method. Journal of the American statistical association 44(247), 335–341.
- Novak, E. (2016). Some results on the complexity of numerical integration. In Monte Carlo and Quasi-Monte Carlo Methods, pp. 161–183. Springer.
- Oates, C. J., M. Girolami, and N. Chopin (2017). Control functionals for Monte Carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79(3), 695–718.
- Owen, A. B. (2013). Monte carlo theory, methods and examples.
- Portier, F. and J. Segers (2019). Monte Carlo integration with a growing number of control variates. Journal of Applied Probability 56, 1168–1186.
- Ranganath, R., S. Gerrish, and D. Blei (2014, 22–25 Apr). Black box variational inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Volume 33, Reykjavik, Iceland, pp. 814–822. PMLR.
- Robert, C. P. and G. Casella (1999). Monte Carlo statistical methods (Second ed.), Volume 2 of Springer Texts in Statistics. Springer.
- South, L., C. Oates, A. Mira, and C. Drovandi (2022). Regularized zero-variance control variates. Bayesian Analysis 1(1), 1-24.
- Wang, C., X. Chen, A. Smola, and E. Xing (2013). Variance reduction for stochastic gradient optimization. In Advances in Neural Information Processing Systems, Volume 26. Curran Associates, Inc.
- Zhang, A., L. D. Brown, and T. T. Cai (2019). Semi-supervised inference: General theory and estimation of means. The Annals of Statistics 47(5), 2538–2566.