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Background, Goal and Contributions

• Sequential simulation has emerged as a leading approach to compute mul-
tidimensional integrals where the target density may be known only up to
a proportionality constant (e.g. Bayesian inference)
• While the design of algorithms with adaptive policies has been of major
interest recently, only few studies have focused on control variates to reduce
the variance.
GOAL: numerically calculate an integral using importance sampling and
reduce the variance by including control variates.
Contributions:
(1) A simple weighted least squares approach is proposed to improve the
procedure of sequential algorithms with control variates.
(2) The proposed approach significantly improves the accuracy of the initial
algorithm, both theoretically and in practice.
(3) It takes the form of a quadrature rule with adapted quadrature weights
that do not depend on the integrand and reflect the information brought
in by the control variates.
(4) Non-asymptotic bound on the probabilistic error of the procedure.

2 / 14



Background, Goal and Contributions

• Sequential simulation has emerged as a leading approach to compute mul-
tidimensional integrals where the target density may be known only up to
a proportionality constant (e.g. Bayesian inference)
• While the design of algorithms with adaptive policies has been of major
interest recently, only few studies have focused on control variates to reduce
the variance.
GOAL: numerically calculate an integral using importance sampling and
reduce the variance by including control variates.
Contributions:
(1) A simple weighted least squares approach is proposed to improve the
procedure of sequential algorithms with control variates.
(2) The proposed approach significantly improves the accuracy of the initial
algorithm, both theoretically and in practice.
(3) It takes the form of a quadrature rule with adapted quadrature weights
that do not depend on the integrand and reflect the information brought
in by the control variates.
(4) Non-asymptotic bound on the probabilistic error of the procedure.

3 / 14



Preliminaries on Monte Carlo Integration

GOAL: Given an integrand g : Rd → R and a target density function f ,
the goal is to compute the integral

α = Ef [g ] =

∫
Rd

g(x)f (x) dx

Can we sample from target distribution f ?

• YES, then use naive Monte Carlo estimate (later on control variates)

I
(mc)
n (g) =

1
n

n∑
i=1

g(Xi ), X1, . . . ,Xn ∼ f

• NO, then use importance sampling with sampling policy q

I (is)
norm(g) =

∑n
i=1 wig(Xi )∑n

i=1 wi
, X1, . . . ,Xn ∼ q,

where the sequence (wi )i=1,...,n of importance weights is defined by

wi = f (Xi )/q(Xi ).
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Generalization: Adaptive Importance Sampling (AIS)

GOAL:
α = Ef [g ] =

∫
Rd

g(x)f (x) dx

• Use a sampling policy (qt)t≥0 = a sequence of densities which evolves
adaptively depending on previous outcomes with qt −→ f when t →∞.
and an allocation policy (nt)t≥0.

• At time t, draw nt particles Xt,1, . . . ,Xt,nt ∼ qt−1 with importance
weights wt,i = f (Xt,i )/qt−1(Xt,i ).

• The normalized AIS estimate [DP21] of α is given by

I (ais)
norm(g) =

∑T
t=1
∑nt

i=1 wt,ig(Xt,i )∑T
t=1
∑nt

i=1 wt,i

.
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Control Variates: variance reduction with samples from f

GOAL:
α = Ef [g ] =

∫
Rd

g(x)f (x) dx

• Control variates are functions h1, . . . , hm ∈ L2(f ) with known integrals.
Let h = (h1, . . . , hm)>, assume that Ef [hj ] = 0 for all j = 1, . . . ,m. (Stein
control variates)

• For any β ∈ Rm, we have Ef [g − β>h] = Ef [g ] leading to the CV
estimate of α, parameterized by β

I
(cv)
n (g , β) =

1
n

n∑
i=1

[g(Xi )− β>h(Xi )], X1, . . . ,Xn ∼ f .

• What optimal choice for β? ? Look at variance and define

β∗ = arg min
β∈Rm

Ef

[
(g − Ef [g ]− β>h)2]
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Control Variates and Least-Squares

• Provided matrix G = Ef [hh>] is invertible, there is a unique β∗ ∈ Rm for
which the variance of I (cv)

n (g) is minimal: β∗ =
(
Ef [hh>]

)−1 Ef [hg ].
• Casting the problem in an Ordinary Least Squares framework leads to
the control variate estimate

I
(cv)
n (g) = I

(cv)
n

(
g , β̂

(cv)
n

)
= α̂

(cv)
n where X1, . . . ,Xn ∼ f ,(

α̂
(cv)
n , β̂

(cv)
n

)
∈ arg min

(a,b)∈R×Rm

1
n

n∑
i=1

{g(Xi )− a− b>h(Xi )}2

Figure: L2 projection of g onto space of control variates Span{h1, . . . , hm}.
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Adaptive Importance Sampling with Control Variates

• AISCV estimate is the first coordinate of the solution to the Weighted
Least Squares problem

(α̂n, β̂n) = arg min
a∈R,b∈Rm

n∑
i=1

wi

[
g(Xi )− a− b>h(Xi )

]2
,wi = f (Xi )/qi−1(Xi ).

• (a) (Exact integration) whenever g is of the form α+β>h for some α ∈ R
and β ∈ Rm, the error is zero, i.e., α̂n = α =

∫
gf dλ.

• (b) (Quadrature Rule) the estimate takes the form of a quadrature rule
α̂n =

∑n
i=1 vn,ig(Xi ), for quadrature weights vn,i that do not depend

on the function g and that can be computed by a single weighted least
squares procedure.
• (c) (Bayesian) it can be computed even when f is known only up to a
multiplicative constant.
• (d) (post-hoc scheme) CV can be brought into play in a post-hoc scheme,
after generation of the particles and importance weights, and this for any
AIS algorithm
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Concentration inequality for the AISCV estimate

Theorem
Under assumptions, for any δ ∈ (0, 1) and for all n ≥ C1c

2B log(10m/δ),
we have, with probability at least 1− δ, that∣∣∣∣I (aiscv)

norm (g)−
∫
Rd

g(x)f (x) dx
∣∣∣∣ ≤ C2τ

√
log(10/δ)

n
+ C3cBτ

log(10m/δ)

n
,

where C1, C2, C2 are some constants and B = supx :f (x)>0 ‖~(x)‖22,
~ = G−1/2h.
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Control Variates in Practice and Bayesian Inference

• Stein control variates [OGC17] are built with operator L on functions
ϕ ∈ C2(Rd ,R) to have Ef [Lϕ] = 0.

(Lϕ)(x) = ∆xϕ(x) +∇xϕ(x)>∇x log f (x).

• ∇x log f (x) can either be directly computed (Bayesian regression) or with
autodiff (Tensorflow and PyTorch).
• Given data D and parameter of interest θ ∈ Rd , posterior integrals take
the form

∫
Rd g(θ)p(θ|D) dθ, where p(θ|D) ∝ `(D|θ)π(θ) is the posterior

distribution, proportional to prior π(·) and a likelihood `(D|·).
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Synthetic examples: Gaussian Mixtures

Integrand and Target: g(x) = x , fΣ(x) = 0.5ΦΣ(x − µ) + 0.5ΦΣ(x + µ)
where µ = (1, . . . , 1)>/2

√
d ,Σ = Id/d and ΦΣ is pdf N (0,Σ).

Sampling policy: Multivariate Student
Control variates: Stein method with ϕ = polynomial with bounded degree
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Figure: Gaussian mixture density: Logarithm of ‖Î (g)− I (g)‖22 for g(x) = x with target
isotropic fΣ with d = 4 (left), d = 8 (right).
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Bayesian Linear Regression on Real-world data

Data [DG19]: housing (N = 506; d = 13;m ∈ {12; 104}); abalone
(N = 4177; d = 8;m ∈ {7; 44}).
Prior: π(θ) ∼ N (µa,Σa), Posterior: p(θ|D) ∝ `(D|θ)π(θ).
Integrand: g(θ) =

∑d
i=1 θ

2
i .

Control variates: Stein control variates with ϕα(θ) = θα1
1 · · · θ

αd
d ,

α1 + · · ·+ αd ≤ Q, Q ∈ {1; 2}.
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Figure: BLR: boxplots of (Î (g)− I (g))/I (g) for g(θ) =
∑d

j=1 θ
2
j with datasets Housing

(left) and Abalone (right).
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Conclusion and take-home message

• This paper provides a new method to incorporate control variates within
standard sequential algorithms.

• The proposed approach significantly improves the accuracy of the initial
algorithm, both theoretically and in practice.

• Control Variates can be brought into play in a post-hoc scheme, after
generation of the particles and importance weights, and this for any AIS
algorithm

Thank you and see you at the conference !
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