Asymptotic Analysis of Conditioned Stochastic Gradient Descent

Rémi LELUC

Ecole Polytechnique, Institut Polytechnique de Paris, France

Joint Work with François Portier, [paper](https://openreview.net/pdf?id=U4XgzRjfF1) Accepted at Transactions on Machine Learning Research, 2023 We consider the following type of optimization problem:

$$
\min_{x \in \mathbb{R}^d} \{ F(x) = \mathbb{E}_{\xi}[f(x,\xi)] \}
$$

 ∇F hard to compute (ERM) or intractable (AIS and RL)

Unbiased estimate in SGD There is a **cheap** gradient generator $q(\cdot,\xi)$ s.t. $\forall x \in \mathbb{R}^d$, $\mathbb{E}_{\xi}[g(x,\xi)] = \nabla F(x)$ (SGD) $x_{k+1} = x_k - \alpha_{k+1} g(x_k, \xi_{k+1})$

- Reference book on Stochastic programming [\(Shapiro et al., 2014\)](#page-25-0)
- Comparison with sample average approximation [\(Nemirovski et al., 2009\)](#page-24-0)

Examples

Empirical Risk Minimization (ERM). Data $z_1, \ldots, z_N \in \mathcal{Z}$, loss $\ell: \mathbb{R}^d \times \mathcal{Z} \to \mathbb{R}$, empirical risk $F(x) = N^{-1} \sum_{i=1}^N \ell(x, z_i) = \int \ell(x, z) P_N(dz)$

$$
g(x,\xi) = \nabla_x \ell(x,\xi), \qquad \xi \sim P_N
$$

Recursive estimates (at time t, a new variable is observed $z_t \sim P$)

Adaptive importance sampling (AIS). Target function f , parametric family of samplers $\{q_x\,:\,x\in\Theta\}$, objective $F(x)=-\int \log(q_x(y))f(y)dy$

$$
g(x,\xi) = -\nabla_x \log(q_x(\xi)) \frac{f(\xi)}{q_0(\xi)}, \qquad \xi \sim q_0.
$$

Policy-gradient methods (RL). Algorithm REINFORCE uses a parameterized policy $\{\pi_x\,:\,x\in\Theta\}$ to optimize expected reward $F(x) = \mathbb{E}_{\xi\sim\pi_x}[\mathcal{R}(\xi)]$

$$
g(x,\xi) = \mathcal{R}(\xi)\nabla_x \log \pi_x(\xi), \qquad \xi \sim \pi_x.
$$

[Robbins and Monro \(1951\)](#page-24-1)

$$
(SGD) \t x_{k+1} = x_k - \alpha_{k+1} g(x_k, \xi_{k+1})
$$

Stochastic approximation literature

• Almost sure convergence: [Robbins and Siegmund \(1971\)](#page-25-1) and [Bertsekas and](#page-21-0) [Tsitsiklis \(2000\)](#page-21-0)

• Rates of convergence and central limit theorem: [Sacks \(1958\)](#page-25-2); [Kushner](#page-23-0) [and Huang \(1979\)](#page-23-0), a law of the iterated logarithm by [Pelletier \(1998a\)](#page-24-2)

• Two different approaches for the asymptotic normality: diffusion-based method [\(Benaïm, 1999;](#page-21-1) [Pelletier, 1998b;](#page-24-3) [Gadat et al., 2018\)](#page-22-0);martingale tools [\(Kushner and Clark, 1978;](#page-23-1) [Delyon, 1996;](#page-22-1) [Hall and Heyde, 2014\)](#page-23-2); Review: [\(Lai](#page-23-3) [et al., 2003\)](#page-23-3)

ML point of view

- Review paper: [Bottou et al. \(2018\)](#page-21-2),
- Non asymptotic bounds [\(Moulines and Bach, 2011\)](#page-24-4)

Conditioned-SGD (CSGD)

$$
(CSGD) \quad x_{k+1} = x_k - \alpha_{k+1} C_k g(x_k, \xi_{k+1})
$$

Optimal choice: $C_k \simeq \nabla^2 F(x^*)^{-1}$ (Newton's method)

Methods

 \bullet Approximation of $\nabla^2F(x^*)^{-1}$ based on Taylor expansion [\(Agarwal et al.,](#page-21-3) [2016\)](#page-21-3).

• Ricatti's formula in *logistic regression* [\(Bercu et al., 2020\)](#page-21-4); generalized in [Boyer and Godichon-Baggioni \(2020\)](#page-22-2).

- Fisher information matrix [\(Amari \(1998\)](#page-21-5); [Kakade \(2002\)](#page-23-4)).
- BFGS approximation in ML literature [\(Broyden, 1970;](#page-22-3) [Fletcher, 1970;](#page-22-4) [Goldfarb, 1970;](#page-23-5) [Shanno, 1970;](#page-25-3) [Byrd et al., 2011;](#page-22-5) [Moritz et al., 2016\)](#page-23-6).

Questions raised

- What condition on C_k to ensure convergence ? Asymptotic normality ?
- What conditioning matrix C_k should we choose?
- \rightarrow The optimal choice according to the asymptotic variance is the inverse of the Hessian matrix $C_k = \nabla F(x^\star)^{-1}$
- Is this optimal variance achieved by a feasible algorithm?
- \rightarrow We show that the answer is positive under mild conditions on the matrix $C_k = \nabla F(x^*)^{-1}$

Some answers

- SA literature: [Venter \(1967\)](#page-25-4); [Fabian et al. \(1973\)](#page-22-6); [Nevelson and Hasminskii](#page-24-5) [\(1976\)](#page-24-5); [Ruppert et al. \(1985\)](#page-25-5); [Wei et al. \(1987\)](#page-25-6); [Spall \(2000\)](#page-25-7)
- The CLT given in [Pelletier \(1998b\)](#page-24-3) requires that $||C_k C^*|| \ll ||x_k x^*||$
- [Boyer and Godichon-Baggioni \(2020\)](#page-22-2) works for convex functions and requires $||C_k - C^*|| = O(n^{-s}), s > 0.$

Contributions

$$
(CSGD) \quad x_{k+1} = x_k - \alpha_{k+1} C_k g(x_k, \xi_{k+1})
$$

Online and nonconvex optimization

- L-smoothness, growth conditions
- the gradient policy is allowed to change in time

A continuity result for CSGD's weak limit

- If $C_k \to C^*$ a.s., then CSGD with $C_k \simeq$ CSGD with C^*
- We give an example where efficiency is reached

Stochastic equicontinuity of the empirical process: if $(X_i)_{i>1}$ is iid and $\{f_n\}$ with small complexity, then $\int (f_{\hat{\eta}_n}(x) - f_{\eta_0}(x))^2 P(dx) = o_P(1)$ implies that

$$
\mathbb{G}_n\{f_{\hat{\eta}_n} - f_{\eta_0}\} = o_P(1)
$$

(in words: estimating η_0 has no effect at the limit)

Goal

Find the minimizer $x^* \in \mathbb{R}^d$ of a function $F: \mathbb{R}^d \to \mathbb{R}$,

$$
x^* = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} F(x).
$$

No convexity required on F

• F is L-smooth, coercive and the equation $\nabla F(x) = 0$ has unique solution x^* .

 \bullet $H=\nabla^2F(x^*)\succ 0$ and ∇^2F is continuous at x^*

Robbins-Monro condition

 $(\alpha_k)_{k\geq 1} \downarrow 0$ s.t. $\sum_{k\geq 1} \alpha_k = +\infty$ $\sum_{k\geq 1} \alpha_k^2 < +\infty$

• In practice
$$
\alpha_k = \alpha k^{-\beta}, \ \beta \in (1/2, 1]
$$

Theorem (Almost sure convergence)

$$
x_k \to x^\star \qquad \text{a.s.}
$$

Additional assumptions

• Liapounov condition and limiting variance Γ on the martingale increments

•
$$
\alpha_k = \alpha k^{-\beta}, \ \beta \in (1/2, 1]
$$

•
$$
(H - \kappa I) \succ 0
$$
 with $\kappa = 1_{\{\beta = 1\}} 1/2\alpha$

Theorem (Weak convergence [Pelletier \(1998b\)](#page-24-3))

The SGD rule satisfies

$$
\frac{1}{\sqrt{\alpha_k}}(x_k - x^*) \rightsquigarrow \mathcal{N}(0, \Sigma), \quad \text{as } k \to \infty
$$

where Σ satisfies the following Lyapunov equation

$$
(H - \kappa I)\Sigma + \Sigma(H^T - \kappa I) = \Gamma.
$$

- Fastest rate for $\beta = 1$ and recover the classical $1/\sqrt{k}$ -rate.
- α large enough to ensure $H I/(2\alpha) > 0$ but small enough so that $\alpha \Sigma$ small.

Variance optimality when $\beta = 1$ via Conditioning

Replace the scalar gain α by a conditioning matrix $C \in \mathbb{R}^{d \times d}$

$$
x_{k+1} = x_k - \left(\frac{C}{k+1}\right) g(x_k, \xi_{k+1}).
$$

with $CH - \kappa I \succ 0$.

Theorem (Deterministic Conditioning)

The sequence $(x_k)_{k\geq 0}$ (given above) satisfies

$$
\sqrt{k}(x_k - x^*) \rightsquigarrow \mathcal{N}(0, \Sigma_C)
$$

where Σ_{C} is given by the Liapounov equation

$$
\left(CH - \frac{I}{2}\right)\Sigma_C + \Sigma_C\left((CH)^T - \frac{I}{2}\right) = C\Gamma C^T.
$$

What conditioning matrix C should we choose?

Optimal Variance

The choice $C^\star = H^{-1}$ is optimal: $\Sigma_{C^\star} \leq \Sigma_C \ \forall C$

- \bullet (Asymptotic efficiency) $\sqrt{k}(x_k x^*) \rightsquigarrow \mathcal{N}(0, \Sigma_{C^*} = H^{-1} \Gamma H^{-1})$
- Averaging of standard SGD gives the same variance [\(Polyak and](#page-24-6) [Juditsky, 1992\)](#page-24-6)
- \bullet C^* is usually unknown ...

Conditioned-SGD

CSGD

$$
(CSGD) \quad x_{k+1} = x_k - \alpha_{k+1} C_k g(x_k, \xi_{k+1})
$$

with

$$
\beta_k I_d \le C_{k-1} \le \gamma_k I_d
$$

Extended Robbins-Monro

The sequences $(\alpha_k)_{k\geq 1},(\beta_k)_{k\geq 1},(\gamma_k)_{k\geq 1}$ are positive and satisfy

$$
\sum_{k\geq 1} \alpha_k \beta_k = +\infty \qquad \sum_{k\geq 1} (\alpha_k \gamma_k)^2 < +\infty
$$

• Note that $C_k = I_d$ recovers SGD with standard Robbins-Monro.

Theorem (Almost sure convergence) The sequence of CSGD iterates satisfies $x_k \to x^*$ a.s.

• At what speed $(x_k - x^*)$ is bounded ? Asymptotic normality ?

CSGD

Mild assumption on the conditioning matrices

- $C_k \rightarrow C$ a.s.
- $(CH \kappa I)$ positive definite with $\kappa = 1_{\{\beta=1\}}1/2\alpha$

Theorem (Weak convergence)

The sequence of CSGD satisfies

$$
\frac{1}{\sqrt{\alpha_k}}(x_k-x^\star)\leadsto \mathcal{N}(0,\Sigma_C),\qquad \text{as }k\to\infty,
$$

where Σ_C satisfies:

$$
(CH - \kappa I) \Sigma_C + \Sigma_C ((CH)^T - \kappa I) = C\Gamma C^T.
$$

- Continuity property (as if $C_k = C$)
- C should be close to the inverse of the Hessian $H = \nabla^2 F(x^*)$.

In a similar spirit as in [Delyon \(1996\)](#page-22-1), the proof relies on the introduction of a linear stochastic algorithm based on the approximation

$$
\nabla F(x_{k-1}) \simeq H(x_{k-1} - x^*)
$$

We consider the auxiliary iteration

$$
\widetilde{\Delta}_k = \widetilde{\Delta}_{k-1} - \alpha_k K \widetilde{\Delta}_{k-1} - \alpha_k C_{k-1} w_k, \qquad k \ge 1
$$

with $K = CH$ and $w_k = g(x_{k-1}, \xi_k) - \nabla f(x_{k-1})$. Then we show that

$$
(x_k - x^*) - \widetilde{\Delta}_k = o_{\mathbb{P}}(\sqrt{\alpha_k})
$$

The analysis of $\widetilde{\Delta}_k/\sqrt{\alpha_k}$ is carried out with martingale tools.

Hessian generator

There exists Hessian generator $H(\cdot,\xi_{k+1}')$ such that

$$
\forall k \ge 1, \forall x \qquad \mathbb{E}\left[H(x,\xi_{k+1}^{\prime})|\mathcal{F}_k\right] = \nabla^2 F(x).
$$

Average past estimates with some weights

$$
\Phi_k = \sum_{j=0}^k \nu_{j,k} H(x_j, \xi'_{j+1}),
$$

where $\nu_{j,k} \propto \exp(-\eta \|x_j - x_k\|_1)$ is such that $\sum_{j=0}^k \nu_{j,k} = 1.$

Regularization

$$
\forall k \in \mathbb{N}, \quad C_k = \left(\Phi_k + \gamma_{k+1}^{-1} I_d\right)^{-1}
$$

Asymptotic Efficiency of CSGD

Proposition

If $H(x,\xi)$ bounded and $\gamma_k \to \infty$ then $C_k \to H^{-1}$ a.s (proof: Freedman's inequality and the Cesaro Lemma)

Corollary (Asymptotic optimality)

Let $(x_k)_{k>0}$ be the CSGD iterates with $\alpha_k = 1/k$ and C_k given before. If $\sum_{k\geq 1}(\gamma_k/k)^2<\infty$, we have

$$
\sqrt{k}(x_k - x^*) \leadsto \mathcal{N}(0, H^{-1}\Gamma H^{-1}), \quad \text{as } k \to \infty
$$

- Asymptotic optimality is reached !
- Practical choice $\alpha_k = 1/k$: removes the assumption $2\alpha H \succ I$

Corollary (Asymptotic of excess risk)

$$
k(F(x_k) - F(x^*)) \rightsquigarrow \sum_{k=1}^d \lambda_k Z_k^2,
$$

 $(Z_1,\ldots,Z_d)\sim\mathcal{N}(0,I_d)$ and $(\lambda_k)_{k=1}^d$ are eigenvalues of $H^{-1/2}\Gamma H^{-1/2}$ 17

Numerical Experiments: ERM

• We apply ERM to regularized regression and classification problems. Ridge regression

Given a data matrix $X = (x_{i,j}) \in \mathbb{R}^{n \times p}$ with labels $y \in \mathbb{R}^n$ and a regularization parameter $\mu > 0$. Consider

$$
\min_{\theta \in \mathbb{R}^d} F(\theta) = \frac{1}{2n} \sum_{i=1}^n (y_i - \sum_{j=1}^d x_{i,j} \theta_j)^2 + \frac{\mu}{2} ||\theta||_2^2
$$

logistic regression

Given a data matrix $X = (x_{i,j}) \in \mathbb{R}^{n \times p}$ with labels $y \in \mathbb{R}^n$ and a regularization parameter $\mu > 0$. Consider

$$
\min_{\theta \in \mathbb{R}^d} F(\theta) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \sum_{j=1}^d x_{i,j} \theta_j)) + \mu \|\theta\|_2^2
$$

• Setting $n = 10,000, d \in \{20,100\}, \mu = 1/n$.

Numerical Experiments: synthetic $d = 20$ and $d = 100$

Numerical Experiments: Boston and Diabetes datasets

Conclusion

Contributions

- Almost sure convergence of CSGD in a non convex setting
- Asymptotic normality: **Equi-continuity property when** $C_k \to C$
- Definition of an algorithm that achieves efficiency

Applications

- \rightarrow When the Hessian is known exactly without noise
- \rightarrow Dynamical update of Hessian estimates (BFGS)

 \rightarrow Particular choice of diagonal conditioning matrix with weights: perform coordinate sampling, see our [paper](https://www.jmlr.org/papers/volume23/21-1240/21-1240.pdf) at Journal of Machine Learning Research, 2022

[References](#page-21-6)

- Agarwal, N., B. Bullins, and E. Hazan (2016). Second-order stochastic optimization in linear time. stat 1050, 15.
- Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation 10(2), 251–276.
- Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Seminaire de probabilites XXXIII, pp. 1–68. Springer.
- Bercu, B., A. Godichon, and B. Portier (2020). An efficient stochastic newton algorithm for parameter estimation in logistic regressions. SIAM Journal on Control and Optimization 58(1), 348–367.
- Bertsekas, D. P. and J. N. Tsitsiklis (2000). Gradient convergence in gradient methods with errors. SIAM Journal on Optimization 10(3), 627–642.
- Bottou, L., F. E. Curtis, and J. Nocedal (2018). Optimization methods for large-scale machine learning. Siam Review 60(2), 223–311.

Bibliography ii

- Boyer, C. and A. Godichon-Baggioni (2020). On the asymptotic rate of convergence of stochastic newton algorithms and their weighted averaged versions. $arXiv$ preprint arXiv:2011.09706.
- Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms 1. general considerations. *IMA Journal of Applied Mathematics* $6(1)$ *, 76-90.*
- Byrd, R. H., G. M. Chin, W. Neveitt, and J. Nocedal (2011). On the use of stochastic hessian information in optimization methods for machine learning. SIAM Journal on Optimization 21(3), 977–995.
- Delyon, B. (1996). General results on the convergence of stochastic algorithms. IEEE Transactions on Automatic Control 41(9), 1245–1255.
- Fabian, V. et al. (1973). Asymptotically efficient stochastic approximation; the rm case. The Annals of Statistics 1(3), 486–495.
- Fletcher, R. (1970). A new approach to variable metric algorithms. The computer journal 13(3), 317–322.
- Gadat, S., F. Panloup, S. Saadane, et al. (2018). Stochastic heavy ball. Electronic Journal of Statistics 12(1), 461-529.

Bibliography iii

- Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of computation 24(109), 23–26.
- Gower, R. M., N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik (2019). Sgd: General analysis and improved rates. arXiv preprint arXiv:1901.09401.
- Hall, P. and C. C. Heyde (2014). Martingale limit theory and its application. Academic press.
- Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems, pp. 1531–1538.
- Kushner, H. J. and D. S. Clark (1978). Stochastic approximation methods for constrained and unconstrained systems.
- Kushner, H. J. and H. Huang (1979). Rates of convergence for stochastic approximation type algorithms. SIAM Journal on Control and Optimization 17(5), 607–617.

Lai, T. L. et al. (2003). Stochastic approximation. Annals of Statistics 31(2), 391-406.

Moritz, P., R. Nishihara, and M. Jordan (2016). A linearly-convergent stochastic l-bfgs algorithm. In Artificial Intelligence and Statistics, pp. 249–258. PMLR.

Bibliography iv

- Moulines, E. and F. R. Bach (2011). Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pp. 451–459.
- Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009). Robust stochastic approximation approach to stochastic programming. SIAM Journal on optimization 19(4), 1574–1609.
- Nevelson, M. B. and R. Z. Hasminskii (1976). Stochastic approximation and recursive estimation, Volume 47. Amer Mathematical Society.
- Pelletier, M. (1998a). On the almost sure asymptotic behaviour of stochastic algorithms. Stochastic processes and their applications 78(2), 217–244.
- Pelletier, M. (1998b). Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. Annals of Applied Probability, $10-44$.
- Polyak, B. T. and A. B. Juditsky (1992). Acceleration of stochastic approximation by averaging. SIAM journal on control and optimization 30(4), 838–855.
- Robbins, H. and S. Monro (1951). A stochastic approximation method. The annals of mathematical statistics, 400–407.

Bibliography v

- Robbins, H. and D. Siegmund (1971). A convergence theorem for non negative almost supermartingales and some applications. In Optimizing methods in statistics, pp. 233–257. Elsevier.
- Ruppert, D. et al. (1985). A newton-raphson version of the multivariate robbins-monro procedure. Annals of Statistics 13(1), 236–245.
- Sacks, J. (1958). Asymptotic distribution of stochastic approximation procedures. The Annals of Mathematical Statistics 29(2), 373–405.
- Shanno, D. F. (1970). Conditioning of quasi-newton methods for function minimization. Mathematics of computation 24(111), 647–656.
- Shapiro, A., D. Dentcheva, and A. Ruszczyński (2014). Lectures on stochastic programming: modeling and theory. SIAM.
- Spall, J. C. (2000). Adaptive stochastic approximation by the simultaneous perturbation method. IEEE transactions on automatic control 45(10), 1839–1853.
- Venter, J. H. (1967). An extension of the robbins-monro procedure. The Annals of Mathematical Statistics 38(1), 181–190.
- Wei, C. et al. (1987). Multivariate adaptive stochastic approximation. The Annals of Statistics 15(3), 1115–1130.