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We consider the following type of optimization problem:

min
x∈Rd

{F (x) = Eξ[f(x, ξ)]}

∇F hard to compute (ERM) or intractable (AIS and RL)

Unbiased estimate in SGD
There is a cheap gradient generator g(·, ξ) s.t.

∀x ∈ Rd, Eξ[g(x, ξ)] = ∇F (x)

(SGD) xk+1 = xk − αk+1g(xk, ξk+1)

• Reference book on Stochastic programming (Shapiro et al., 2014)

• Comparison with sample average approximation (Nemirovski et al., 2009)
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Examples

Empirical Risk Minimization (ERM). Data z1, . . . , zN ∈ Z, loss
ℓ : Rd ×Z → R, empirical risk F (x) = N−1 ∑N

i=1 ℓ(x, zi) =
∫
ℓ(x, z)PN (dz)

g(x, ξ) = ∇xℓ(x, ξ), ξ ∼ PN

Recursive estimates (at time t, a new variable is observed zt ∼ P )

Adaptive importance sampling (AIS). Target function f , parametric family of
samplers {qx : x ∈ Θ}, objective F (x) = −

∫
log(qx(y))f(y)dy

g(x, ξ) = −∇x log(qx(ξ))
f(ξ)

q0(ξ)
, ξ ∼ q0.

Policy-gradient methods (RL). Algorithm REINFORCE uses a parameterized
policy {πx : x ∈ Θ} to optimize expected reward F (x) = Eξ∼πx [R(ξ)]

g(x, ξ) = R(ξ)∇x log πx(ξ), ξ ∼ πx.
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Robbins and Monro (1951)

(SGD) xk+1 = xk − αk+1g(xk, ξk+1)

Stochastic approximation literature
• Almost sure convergence: Robbins and Siegmund (1971) and Bertsekas and
Tsitsiklis (2000)

• Rates of convergence and central limit theorem: Sacks (1958); Kushner
and Huang (1979), a law of the iterated logarithm by Pelletier (1998a)

• Two different approaches for the asymptotic normality: diffusion-based
method (Benaïm, 1999; Pelletier, 1998b; Gadat et al., 2018);martingale tools
(Kushner and Clark, 1978; Delyon, 1996; Hall and Heyde, 2014); Review: (Lai
et al., 2003)

ML point of view

• Review paper: Bottou et al. (2018),

• Non asymptotic bounds (Moulines and Bach, 2011)
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Conditioned-SGD (CSGD)

(CSGD) xk+1 = xk − αk+1Ckg(xk, ξk+1)

Optimal choice: Ck ≃ ∇2F (x∗)−1 (Newton’s method)

Methods
• Approximation of ∇2F (x∗)−1 based on Taylor expansion (Agarwal et al.,
2016).
• Ricatti’s formula in logistic regression (Bercu et al., 2020); generalized in
Boyer and Godichon-Baggioni (2020).
• Fisher information matrix (Amari (1998); Kakade (2002)).
• BFGS approximation in ML literature (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970; Byrd et al., 2011; Moritz et al., 2016).
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Questions raised
• What condition on Ck to ensure convergence ? Asymptotic normality ?
• What conditioning matrix Ck should we choose ?
→ The optimal choice according to the asymptotic variance is the inverse
of the Hessian matrix Ck = ∇F (x⋆)−1

• Is this optimal variance achieved by a feasible algorithm ?
→ We show that the answer is positive under mild conditions on the
matrix Ck = ∇F (x⋆)−1

Some answers
• SA literature: Venter (1967); Fabian et al. (1973); Nevelson and Hasminskii
(1976); Ruppert et al. (1985); Wei et al. (1987); Spall (2000)

• The CLT given in Pelletier (1998b) requires that ∥Ck − C∗∥ ≪ ∥xk − x∗∥

• Boyer and Godichon-Baggioni (2020) works for convex functions and requires
∥Ck − C∗∥ = O(n−s), s > 0.
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Contributions

(CSGD) xk+1 = xk − αk+1Ckg(xk, ξk+1)

Online and nonconvex optimization
• L-smoothness, growth conditions

• the gradient policy is allowed to change in time

A continuity result for CSGD’s weak limit
• If Ck → C∗ a.s., then CSGD with Ck ≃ CSGD with C∗

• We give an example where efficiency is reached

Stochastic equicontinuity of the empirical process: if (Xi)i≥1 is iid and {fη} with
small complexity, then

∫
(fη̂n (x)− fη0 (x))

2P (dx) = oP (1) implies that

Gn{fη̂n − fη0} = oP (1)

(in words: estimating η0 has no effect at the limit)
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Mathematical Background

Goal

Find the minimizer x⋆ ∈ Rd of a function F : Rd → R,

x⋆ = argmin
x∈Rd

F (x).

No convexity required on F

• F is L-smooth, coercive and the equation ∇F (x) = 0 has unique
solution x⋆.
• H = ∇2F (x∗) ≻ 0 and ∇2F is continuous at x∗
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Asymptotics of SGD

SGD policy (Gower et al., 2019)

(SGD) xk+1 = xk − αk+1g(xk, ξk+1),

with ∀x ∈ Rd,∀k ∈ N
• E[g(x, ξk+1)|Fk] = ∇F (x)

• E
[
∥g(x, ξk+1)∥2|Fk

]
≤ 2L (F (x)− F (x⋆)) + σ2

Robbins-Monro condition

(αk)k≥1 ↓ 0 s.t.
∑

k≥1 αk = +∞
∑

k≥1 α
2
k < +∞

• In practice αk = αk−β , β ∈ (1/2, 1]

Theorem (Almost sure convergence)

xk → x⋆ a.s.
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Additional assumptions
• Liapounov condition and limiting variance Γ on the martingale
increments
• αk = αk−β , β ∈ (1/2, 1]

• (H − κI) ≻ 0 with κ = 1{β=1}1/2α

Theorem (Weak convergence Pelletier (1998b))

The SGD rule satisfies

1
√
αk

(xk − x⋆)⇝N (0,Σ), as k → ∞

where Σ satisfies the following Lyapunov equation

(H − κI)Σ + Σ(HT − κI) = Γ.

• Fastest rate for β = 1 and recover the classical 1/
√
k-rate.

• α large enough to ensure H−I/(2α) ≻ 0 but small enough so that αΣ small.
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Variance optimality when β = 1 via Conditioning

Replace the scalar gain α by a conditioning matrix C ∈ Rd×d

xk+1 = xk −
(

C

k + 1

)
g(xk, ξk+1).

with CH − κI ≻ 0.

Theorem (Deterministic Conditioning)

The sequence (xk)k≥0 (given above) satisfies
√
k(xk − x⋆)⇝ N (0,ΣC)

where ΣC is given by the Liapounov equation(
CH − I

2

)
ΣC +ΣC

(
(CH)T − I

2

)
= CΓCT .

11



Deterministic Conditioning

What conditioning matrix C should we choose ?

Optimal Variance

The choice C⋆ = H−1 is optimal: ΣC⋆ ≤ ΣC ∀C

• (Asymptotic efficiency)
√
k(xk − x⋆)⇝ N (0,ΣC⋆ = H−1ΓH−1)

• Averaging of standard SGD gives the same variance (Polyak and
Juditsky, 1992)

• C⋆ is usually unknown ...
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Conditioned-SGD

CSGD

(CSGD) xk+1 = xk − αk+1Ckg(xk, ξk+1)

with
βkId ≤ Ck−1 ≤ γkId

Extended Robbins-Monro
The sequences (αk)k≥1, (βk)k≥1, (γk)k≥1 are positive and satisfy∑

k≥1

αkβk = +∞
∑
k≥1

(αkγk)
2 < +∞

• Note that Ck = Id recovers SGD with standard Robbins-Monro.

Theorem (Almost sure convergence)

The sequence of CSGD iterates satisfies xk → x⋆ a.s.

• At what speed (xk − x⋆) is bounded ? Asymptotic normality ?
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CSGD

Mild assumption on the conditioning matrices
• Ck → C a.s.
• (CH − κI) positive definite with κ = 1{β=1}1/2α

Theorem (Weak convergence)

The sequence of CSGD satisfies

1
√
αk

(xk − x⋆)⇝ N (0,ΣC), as k → ∞,

where ΣC satisfies:

(CH − κI) ΣC +ΣC

(
(CH)T − κI

)
= CΓCT .

• Continuity property (as if Ck = C)

• C should be close to the inverse of the Hessian H = ∇2F (x⋆).
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Sketch of the proof

In a similar spirit as in Delyon (1996), the proof relies on the introduction
of a linear stochastic algorithm based on the approximation

∇F (xk−1) ≃ H(xk−1 − x⋆)

We consider the auxiliary iteration

∆̃k = ∆̃k−1 − αkK∆̃k−1 − αkCk−1wk, k ≥ 1

with K = CH and wk = g(xk−1, ξk)−∇f(xk−1). Then we show that

(xk − x⋆)− ∆̃k = oP(
√
αk)

The analysis of ∆̃k/
√
αk is carried out with martingale tools.
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An effective algorithm

Hessian generator

There exists Hessian generator H(·, ξ′k+1) such that

∀k ≥ 1, ∀x E
[
H(x, ξ′k+1)|Fk

]
= ∇2F (x).

Average past estimates with some weights

Φk =

k∑
j=0

νj,kH(xj , ξ
′
j+1),

where νj,k ∝ exp(−η∥xj − xk∥1) is such that
∑k

j=0 νj,k = 1.

Regularization

∀k ∈ N, Ck =
(
Φk + γ−1

k+1Id
)−1
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Asymptotic Efficiency of CSGD

Proposition

If H(x, ξ) bounded and γk → ∞ then Ck → H−1 a.s

(proof: Freedman’s inequality and the Cesaro Lemma)

Corollary (Asymptotic optimality)

Let (xk)k≥0 be the CSGD iterates with αk = 1/k and Ck given before. If∑
k≥1(γk/k)

2 < ∞, we have

√
k(xk − x⋆)⇝ N (0, H−1ΓH−1), as k → ∞

• Asymptotic optimality is reached !
• Practical choice αk = 1/k: removes the assumption 2αH ≻ I

Corollary (Asymptotic of excess risk)

k(F (xk)− F (x⋆))⇝
d∑

k=1

λkZ
2
k ,

(Z1, . . . , Zd) ∼ N (0, Id) and (λk)
d
k=1 are eigenvalues of H−1/2ΓH−1/2 17



Numerical Experiments: ERM

• We apply ERM to regularized regression and classification problems.
Ridge regression

Given a data matrix X = (xi,j) ∈ Rn×p with labels y ∈ Rn and a
regularization parameter µ > 0. Consider

min
θ∈Rd

F (θ) =
1

2n

n∑
i=1

(yi −
d∑

j=1

xi,jθj)
2 +

µ

2
∥θ∥22

logistic regression

Given a data matrix X = (xi,j) ∈ Rn×p with labels y ∈ Rn and a
regularization parameter µ > 0. Consider

min
θ∈Rd

F (θ) =
1

n

n∑
i=1

log(1 + exp(−yi

d∑
j=1

xi,jθj)) + µ∥θ∥22

• Setting n = 10, 000, d ∈ {20, 100}, µ = 1/n.
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Numerical Experiments: synthetic d = 20 and d = 100
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Numerical Experiments: Boston and Diabetes datasets
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Conclusion

Contributions
• Almost sure convergence of CSGD in a non convex setting

• Asymptotic normality: Equi-continuity property when Ck → C

• Definition of an algorithm that achieves efficiency

Applications
→ When the Hessian is known exactly without noise
→ Dynamical update of Hessian estimates (BFGS)
→ Particular choice of diagonal conditioning matrix with weights:
perform coordinate sampling, see our paper at Journal of Machine
Learning Research, 2022
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