Compression with Exact Error Distribution for Federated Learning
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Experiments

Context and Setting Communication Complexity

e Compression schemes have been extensively used in federated learning to

Uniform error is easy and can be leveraged!

Individual Mechanisms (Informal)
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1. FL and Differential Privacy DECOMPOSE an ageregate AINQ) mechanism for simulating (), with an expected Lot

Gausian mechanism G(D) = f(D) + N (0, o°I) guarantees (g, 6)-DP. Use
AINQ mechanisms to directly obtain privacy guarantees with a reduced
communication cost, e.g. setting the compression error to be a properly
scaled (Gaussian.

2. FL and Langevin Dynamics

For derivative function H of a potential, the stochastic Langevin dynamics
S Opp1 = O, — YH(01) + /2721 with Zp, ~ Ny(0,1;) and v > 0. Reduce

point as ¢;(€(A)) to recover the classical DRS algorithm.
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e (lower bound) For P, () with pdfs f, g (unimodal,symmétrié) with
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Comparison of the Subsampled Individual Gaussian Mechanism (SIGM) and
the CSGM scheme of [3]. CSGM leverages privacy amplification through sub-
sampling to reduce the amount of noise added by the Gaussian mechanism.
We show that even in this setting with lower noise magnitude, it is possible to

improve the accuracy-communication tradeoft with our methods.
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