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Context and Setting

• Compression schemes have been extensively used in federated learning to
reduce the communication cost.
• Investigate compression and aggregation schemes that produce a specific
error distribution (Gaussian or Laplace) on the sum of compression errors.

Aggregate AINQ schemes
Using shared randomness, n clients holding data x1, . . . , xn and a server
producing Y satisfies (AINQ) property if the quantization error follows a
target distribution Q for any {xi}n

i=1 : Y −
(1

n

∑n
i=1 xi

)
∼ Q.

We consider scalar mechanisms and then apply them coordinate-wise. The
simplest such mechanism is subtractive dithering, which guarantees a
uniformly distributed error.

Subtractive Dithering
For a given step size w > 0 and input X , subtractive dithering works by
sampling S ∼ U(−1/2, 1/2), encoding the message M = ⌈X/w + S⌋,
decoding Y = (M − S) w. Then (Y − X) ∼ U(−w/2; w/2), for any X .

Federated Learning Applications

1. FL and Differential Privacy
Gausian mechanism G(D) = f (D) + N (0, σ2I) guarantees (ε, δ)-DP. Use
AINQ mechanisms to directly obtain privacy guarantees with a reduced
communication cost, e.g. setting the compression error to be a properly
scaled Gaussian.

2. FL and Langevin Dynamics
For derivative function H of a potential, the stochastic Langevin dynamics
is θk+1 = θk − γH(θk) +

√
2γZk+1 with Zk ∼ Nd(0, Id) and γ > 0. Reduce

communication cost with Cγ such that Cγ(X) − X ∼ Nd(0, 2Id/γ) along
with θk+1 = θk − γCγ(H(θk)).

3. FL and Randomized Smoothing
minθ∈Rd{f (θ) =

∑n
i=1 fi(θ)} rely on smoothed fσ(θ) = Eξ[f (θ+σξ)] where

ξ ∼ N (0, Id) and σ > 0. Compress the model parameter θ with a Gaussian
error C (θ) = θ + σξ and then evaluate the subgradients at compressed
point as gi(C (θ)) to recover the classical DRS algorithm.

Individual Mechanisms

Uniform error is easy and can be leveraged!
Multiple ways to use uniform distributions to generate (tile) other noises [1, 2].
The idea is to sample the quantization step size and a bias from a specific
distribution.

With multiple clients need to decompress before aggregation!

Aggregate Mechanisms

Irwin-Hall Mechanism
Let S = (S1, . . . , Sn) iid∼ U(−1/2, 1/2) and T = 0 to be degenerate. The
encoding function is Mi = E (xi, Si) = ⌈xi/w + Si⌋ where w := 2σ

√
3n,

and the decoding function is Y = w(
∑

i Mi −
∑

i Si). The noise is a
scaled Irwin-Hall distribution IH(n, 0, σ2), where IH(n, µ, σ2) denotes the
distribution of n−1∑n

i=1 Zi + µ with Z1, . . . , Zn
iid∼ U(−σ

√
3n, σ

√
3n).
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Aggregate Q Mechanism
Let S1, . . . , Sn

iid∼ U(−1/2, 1/2) and T = (A, B) ∼ πA,B ∈ ΠA,B(P, Q).
The aggregate Q mechanism is defined by w := 2σ

√
3n and

E (x, s, a, b) := ⌈x/(aw) + s⌋ ,

D((mi)i, (si)i, a, b) := aw

n

(
n∑

i=1
mi −

n∑
i=1

si

)
+ b.

Communication Complexity

Individual Mechanisms (Informal)

• (Optimality Gap) For an input X ∼ U(0, t), the direct layered quantizer
is optimal up to 1/t factor [1]. For a target unimodal symmetric noise
distribution fZ, the shifted layered quantizer uses at most 2 bits than
the direct layered quantizer.

• (Minimal step size) Denote by ηZ the minimal step size of the shifted
layer quantizer and assume X lies in a fixed interval of length t [2].

Z ∼ Laplace(0, σ/
√

2) → ηZ = σ
√

2 ln 2
Z ∼ N (0, σ2) → ηZ = 2σ

√
ln 4

Aggregate Mechanism
• (complexity): Let P = IH(n, 0, σ2) and assume |xi| ≤ t/2. There exists

an aggregate AINQ mechanism for simulating Q, with an expected
amount of communication per client upper-bounded by

−hM(Q∥P ) + log t

2σ
√

3n
+ 6σ

√
3n log e

t
· EZ∼Q[|Z|]
EZ∼P [|Z|]

+ 1.

• (lower bound) For P, Q with pdfs f, g (unimodal,symmetric) with
L := 2 sup{x : f (x) > 0} < ∞ and λ := infx>0 dg(x)/df (x), we have

hM(Q∥P ) ≥ −(1−λ)
(

Lf (0) + log eL(g(0) − λf (0))
2(1 − λ)

)
.

Experiments

Comparison against DDG mechanism:

MSE (left) and bits per client (right) against ε. The DDG mechanism can
require up to b = 18 bits to match the privacy-utility tradeoff of aggregate
Gaussian, where the latter only requires ≤ 2.5 bits on average. We also plot
the bits per client for the shifted layered quantizer (using a fixed or variable-
length code) on the right figure for comparison (shifted layered quantizer is
incompatible with SecAgg).

Improving Privacy Amplification by Subsampling:

Comparison of the Subsampled Individual Gaussian Mechanism (SIGM) and
the CSGM scheme of [3]. CSGM leverages privacy amplification through sub-
sampling to reduce the amount of noise added by the Gaussian mechanism.
We show that even in this setting with lower noise magnitude, it is possible to
improve the accuracy-communication tradeoff with our methods.
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