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SEQUENTIAL FRAMEWORK AISCV ESTIMATOR AND WOLS NON-ASYMPTOTIC BOUND NUMERICAL EXPERIMENTS
e GOAL: Given integrand g : R? — R and target den-  ® AISCV estimate is the first coordinate of the so-  Theorem 1 (Concentration inequality). Under assump- e sampling policy is multivariate Student ¢ of degree v
. . : lution to the weighted least squares problem tions, for any & € (0, 1) and for alln > C1c*Blog(10m/5),  denoted by {qy,x, : p € R} with ¥o = oola(v — 2)/v
sity function f:| [ = E[g] = g(x)f(x)dx , L .
Rd - we have, with probability at least 1 — 9, and v > 2,00 > 0. The mean pu: is updated by the
(f is posterior distribution in Bayesian) (G, Bn) = arg min Z w; [g(Xi) —a — bTh(Xi)} ’ generalized method of moments (GMM), leading to
e (¢i)i>0 is the policy of the algorithm: a sequence of a€R,bER™ 7 s (g) — ]| < Cﬂ\/log(;()/é) L CacBT log(lgm/(S) o= o wei X))/ (O o ws ) [2].
densities which evolves adaptively depending on previ- e (a) (Exact integration) whenever g is of the form e The allocation policy is fixed to ny = 1000 and the
ous outcomes. a + ' h for some a € R and 5 € R™, the error is where C1, C2, C2 are universal constants and B = number of stages is T' € {5; 10; 20; 30; 50}.
2 . L —1/2 _ _
e particles (X;);>1 are generated sequentially accord-  zero, i.e., &, = a = [ gf d\. SUP,. 5 () >0 [ A(@)[|2. with h = G~ "h. *9(z) =2, fo(z) = 0.5@x(z—p)+0.5Cs (2 +p) where
- . _|_ L .
ing to policy X; ~ ¢;—1 with importance weights p=(1...,1)"/2v/d, % = la/d and @5 is pdf N'(0, ).
w; = f(X5)/qi—1(X5)- e (b) (Quadrature Rule) the estimate takes the AISCV POST-HOC SCHEME e ws |6
A n = /] AlsCV2 | = —77
e The integral is estimated by the normalized sum form of a quadrature rule &,, = ) ;" vpn,i9(Xy), Require: integrand g, T € N*, allocation policy (n:)i_,, % _8- AISCV3 ‘\? 8
for quadrature weights v,, ; that do not depend weights (w¢)L_, with wy = (wy ;) ,, matrices (H:)L_, 2 _;z 2 _;z
on the function g and that can be computed by a with Hy = (h;j(Xy:)) 2" ", particles (X;; : t = 2 1. 2 g
single weighted least squares procedure. 1,...,T:i=1,...,n¢) %‘12 g-ii ey
5 : T n 2 — T3] — =131 AISCV3
- Pn(ln) = all;%glnm 2=t iz Whi (1 - bTh(Xt’i)) 5 10 20 30 50 5 10 20 30 50
e (c) (Bayesian) it can be computed even when f 2wy = diag(wy)[1n, — HyBn(1,)] fort =1,....T Total Sample Size (x1e3) Total Sample Size (x1e3)
e h = (hi,...,hm)" vector of control variates is known only up to a multiplicative constant. 3: Compute s = Zle ST U Figuge 2: Gaussian mixture density: Logarithm of 11(g) —
i.e. functions such that integral [ hyfdA is known. | 4: Compute ve; = ugi/sfor1 <t <T;1<i<n cIZ (i) !32( fi(;h%(x) — ¢ with target isotropic fx; with d = 4 (left),
w.lo.g. k] = 0. For any 3 € R™, o (d) (post-hoc scheme) CV can be brought into 5. return L}aiscv) (9) = ST S 0,.(Xe)
ielg — B'h] = Ef[g] yielding unbiased estimator play in a post-hoc scheme, after generation of the e (Bayesian LR) g(#) = 3¢ | 7 with Stein CV out of
. 1 — particles and importance weights, and this for any monomials with total degree Q € {1;2}.
(g, 8) = - > (g( X;) - 5Th(xi)) AIS algorithm CV IN PRACTICE
: Z.Zl — . . e Stein control variates [1] are built with operator £ on S 015/ | AlS S 0.30. AlS
e Provided matrix G = E([hh'] is invertible, there is P F2R4R) to h - ) = e | = oo e
CcVv . & , 4, = . g 0.101 g .20
a unique 8" € R™ for which the variance of I8 (g) is AISCV ALGORITHM HRCHONE ¥ ( ) to a:ie e T s : 1 0.10- __
minimal: 5° = (E;[hh7]) " Eylhg (£6)(@) = Duip(x) + Vap(z) Ve log f(2). E PRS- D] IR
' / / ' Require: integrand g, target density f, stages T' € N*, alloca- . . . L o S e S e |
e Castine the nroblem in an Ordinarv Least Sguares ® vﬂ? lOg f(.il?) can either be dll‘eCﬂY ComPUted (BayeSIan = _0.05- - |5 -0.104 -7
5 P y 9 tion policy (nt)le, initial density qo, update rule for the , , , = ol S 0.20. & f
framework leads to the control variate estimate sampling policy regression) or with autoditt (Tensorflow and PyTorch). g —0.101 | _g;g‘;:f%— =P 3 030, ojm%%_ S N
],,(LCV) (g) — ],,(LCV) (g) Ar'(lcv)) — @%CV) where 1: fort = 1, ce ,T do 5'I'otal égmpéoSize ?SleB)SO 5'I'otal é(a)mpIZOSize ~?>(<)1e3)50
N 7. Generate X¢1, ..., Xtn, ~ Gt—1 BAYESIAN INFERENCE . | | ) 3
~(ev)  A(cv) : 1 T 9 . - Figure 3: BLR: boxplots of (I(g) — I(g))/1(g) for g(0) =
(6, Br ) € : a;)ge I{&L}m n Z{g (Xi) —a—b h(Xi)} 3: Compute the vector of weights (w¢,:);2; where e Given data D and parameter of interest # ¢ R, 2?21 0% with datasets Housing (left) and Abalone (right).
@ i=1
4 we,i = f(Xei)/qe-1(Xe,0) - posterior integrals take the form |[,, g(68)p(0|D)dé,
. . . o . N\J=1,....,m
> Build CV matrix Hy = (h;(X+.i)) i=1,...,n¢ where p(0|D) x £(D|0)m(0) is the posterior distribution,
@ 6: Evaluate integrand on particles: (g(X+,:)).2, - , | S |
\ | proportional to prior 7(-) and a likelihood ¢(D|-). lami hoo, | funct:
/ o= 1(3) - KTB" 7. Update the sampler ¢; based on all previous par- | | | | [1] C.]. Oates, M. Girolami, and N. Chopin. Control function-
O ticles (Xo; : s = 1 i1 ne) e (Linear regression) {(X,y|f) is proportional to als for Monte Carlo integration. Journal of the Royal Statisti-
o ond for St T Ve (0_2)—N/2 exp(—(y — X@)T(y —X0)/(26%)), yielding the cal Society: Series B (Statistical Methodology), 79(3):695-718,
9: (ar,fr) = argmin ®(a,b) with score function Vo log (X, y/6) = X" (y = X6)/(20). o
T(a,i)tEIRime o (Logistic regression) £(X,y|0) = Hfi1 o (0 Til?‘z‘)yi (1 — [2] E Portier and B. Delyon. Asymptotic optimality of adap-
10: ®(a.b) = ; X:i)—a— b' h(X ; 2 T W2\1—v; : : : tive importance sampling. Advances in Neural Information
Figure 1: L° projection of the integrand g onto the space (a,5) ; =1 wei (9(Xe1) —a (Xe.) o0 i) ' The score function is simply P Ps v
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of control variates Span{hi,...,hm}. 11: return I8V (g) = Gr. Volog(X,yl0) = X " (y — o(X0)). 827



