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SEQUENTIAL FRAMEWORK

• GOAL: Given integrand g : Rd → R and target den-

sity function f : I = Ef [g] =

∫
Rd

g(x)f(x) dx

(f is posterior distribution in Bayesian)

• (qi)i≥0 is the policy of the algorithm: a sequence of

densities which evolves adaptively depending on previ-

ous outcomes.

• particles (Xi)i≥1 are generated sequentially accord-

ing to policy Xi ∼ qi−1 with importance weights

wi = f(Xi)/qi−1(Xi).

• The integral is estimated by the normalized sum

I(ais)
n =

(
n∑
i=1

wig(Xi)

)
/

(
n∑
i=1

wi

)

CONTROL VARIATES AND OLS
• h = (h1, . . . , hm)> vector of control variates
i.e. functions such that integral

∫
hkf dλ is known.

w.l.o.g. Ef [h] = 0. For any β ∈ Rm,
Ef [g − β>h] = Ef [g] yielding unbiased estimator

I(cv)
n (g, β) =

1

n

n∑
i=1

(
g(Xi)− β>h(Xi)

)
• Provided matrix G = Ef [hh>] is invertible, there is
a unique β∗ ∈ Rm for which the variance of I(cv)

n (g) is
minimal: β∗ =

(
Ef [hh>]

)−1 Ef [hg].

• Casting the problem in an Ordinary Least Squares
framework leads to the control variate estimate

I(cv)
n (g) = I(cv)

n

(
g, β̂(cv)

n

)
= α̂(cv)

n where(
α̂(cv)
n , β̂(cv)

n

)
∈ arg min

(a,b)∈R×Rm

1

n

n∑
i=1

{g(Xi)− a− b>h(Xi)}2

Figure 1: L2 projection of the integrand g onto the space
of control variates Span{h1, . . . , hm}.

AISCV ESTIMATOR AND WOLS
• AISCV estimate is the first coordinate of the so-
lution to the weighted least squares problem

(α̂n, β̂n) = argmin
a∈R,b∈Rm

n∑
i=1

wi

[
g(Xi)− a− b>h(Xi)

]2
• (a) (Exact integration) whenever g is of the form
α+ β>h for some α ∈ R and β ∈ Rm, the error is
zero, i.e., α̂n = α =

∫
gf dλ.

• (b) (Quadrature Rule) the estimate takes the
form of a quadrature rule α̂n =

∑n
i=1 vn,ig(Xi),

for quadrature weights vn,i that do not depend
on the function g and that can be computed by a
single weighted least squares procedure.

• (c) (Bayesian) it can be computed even when f
is known only up to a multiplicative constant.

• (d) (post-hoc scheme) CV can be brought into
play in a post-hoc scheme, after generation of the
particles and importance weights, and this for any
AIS algorithm

AISCV ALGORITHM

Require: integrand g, target density f , stages T ∈ N∗, alloca-

tion policy (nt)Tt=1, initial density q0, update rule for the

sampling policy

1: for t = 1, . . . , T do
2: Generate Xt,1, . . . , Xt,nt ∼ qt−1

3: Compute the vector of weights (wt,i)
nt
i=1 where

4: wt,i = f(Xt,i)/qt−1(Xt,i)

5: Build CV matrix Ht =
(
hj(Xt,i)

)j=1,...,m

i=1,...,nt

6: Evaluate integrand on particles: (g(Xt,i))
nt
i=1

7: Update the sampler qt based on all previous par-
ticles (Xs,i : s = 1, . . . , t; i = 1, . . . , ns)

8: end for
9: (α̂T , β̂T ) = arg min

(a,b)∈R×Rm
Φ(a, b) with

10: Φ(a, b) =
T∑
t=1

nt∑
i=1

wt,i
(
g(Xt,i)− a− b>h(Xt,i)

)2
11: return I(aiscv)

n (g) = α̂T .

NON-ASYMPTOTIC BOUND

Theorem 1 (Concentration inequality). Under assump-
tions, for any δ ∈ (0, 1) and for all n ≥ C1c

2B log(10m/δ),
we have, with probability at least 1− δ,

∣∣∣I(aiscv)
n (g)− I

∣∣∣ ≤ C2τ

√
log(10/δ)

n
+C3cBτ

log(10m/δ)

n
,

where C1, C2, C2 are universal constants and B =

supx:f(x)>0 ‖~(x)‖22. with ~ = G−1/2h.

AISCV POST-HOC SCHEME

Require: integrand g, T ∈ N∗, allocation policy (nt)Tt=1,

weights (wt)Tt=1 with wt = (wt,i)
nt
i=1, matrices (Ht)Tt=1

with Ht =
(
hj(Xt,i)

)j=1,...,m

i=1,...,nt
, particles (Xt,i : t =

1, . . . , T ; i = 1, . . . , nt)

1: β̂n(1n) = arg min
b∈Rm

∑T
t=1

∑nt
i=1 wt,i

(
1− b>h(Xt,i)

)2
2: ut = diag(wt)[1nt −Htβ̂n(1n)] for t = 1, . . . , T

3: Compute s =
∑T
t=1

∑nt
i=1 ut,i

4: Compute vt,i = ut,i/s for 1 ≤ t ≤ T ; 1 ≤ i ≤ nt
5: return I(aiscv)

T (g) =
∑T
t=1

∑nt
i=1 vt,ig(Xt,i)

CV IN PRACTICE

• Stein control variates [1] are built with operator L on

functions ϕ ∈ C2(Rd,R) to have Ef [Lϕ] = 0.

(Lϕ)(x) = ∆xϕ(x) +∇xϕ(x)>∇x log f(x).

• ∇x log f(x) can either be directly computed (Bayesian

regression) or with autodiff (Tensorflow and PyTorch).

BAYESIAN INFERENCE

• Given data D and parameter of interest θ ∈ Rd,

posterior integrals take the form
∫
Rd g(θ)p(θ|D) dθ,

where p(θ|D) ∝ `(D|θ)π(θ) is the posterior distribution,

proportional to prior π(·) and a likelihood `(D|·).

• (Linear regression) `(X, y|θ) is proportional to

(σ2)−N/2 exp(−(y−Xθ)>(y−Xθ)/(2σ2)), yielding the

score function∇θ log `(X, y|θ) = X>(y −Xθ)/(2σ2).

• (Logistic regression) `(X, y|θ) =
∏N
i=1 σ(θ>xi)

yi(1−
σ(θ>xi))

1−yi . The score function is simply

∇θ log `(X, y|θ) = X>(y − σ(Xθ)).

NUMERICAL EXPERIMENTS

• sampling policy is multivariate Student t of degree ν
denoted by {qµ,Σ0 : µ ∈ Rd}with Σ0 = σ0Id(ν − 2)/ν

and ν > 2, σ0 > 0. The mean µt is updated by the
generalized method of moments (GMM), leading to
µt = (

∑t
s=1

∑ns
i=1 ws,iXs,i)/(

∑t
s=1

∑ns
i=1 ws,i) [2].

• The allocation policy is fixed to nt = 1000 and the
number of stages is T ∈ {5; 10; 20; 30; 50}.
• g(x) = x, fΣ(x) = 0.5ΦΣ(x−µ)+0.5ΦΣ(x+µ) where
µ = (1, . . . , 1)>/2

√
d,Σ = Id/d and ΦΣ is pdfN (0,Σ).
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Figure 2: Gaussian mixture density: Logarithm of ‖Î(g) −
I(g)‖22 for g(x) = x with target isotropic fΣ with d = 4 (left),
d = 8 (right).

• (Bayesian LR) g(θ) =
∑d
i=1 θ

2
i with Stein CV out of

monomials with total degree Q ∈ {1; 2}.
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Figure 3: BLR: boxplots of (Î(g) − I(g))/I(g) for g(θ) =∑d
j=1 θ

2
j with datasets Housing (left) and Abalone (right).
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