

École nationale t de l'analuse de l'information

SEQUENTIAL FRAMEWORK

• **GOAL:** Given **integrand** $g : \mathbb{R}^d \to \mathbb{R}$ and target **den-**

sity function
$$f$$
: $I = \mathbb{E}_f[g] = \int_{\mathbb{R}^d} g(x) f(x) \, \mathrm{d}x$
(*f* is posterior distribution in Bayesian)

• $(q_i)_{i>0}$ is the **policy** of the algorithm: a sequence of densities which evolves adaptively depending on previous outcomes.

• **particles** $(X_i)_{i\geq 1}$ are generated sequentially according to policy $X_i \sim q_{i-1}$ with importance weights $w_i = f(X_i)/q_{i-1}(X_i).$

• The integral is estimated by the normalized sum

$$I_n^{(\text{ais})} = \left(\sum_{i=1}^n w_i g(X_i)\right) / \left(\sum_{i=1}^n w_i\right)$$

CONTROL VARIATES AND OLS

• $h = (h_1, \ldots, h_m)^\top$ vector of control variates *i.e.* functions such that integral $\int h_k f d\lambda$ is known. w.l.o.g. $\mathbb{E}_{f}[h] = 0$. For any $\beta \in \mathbb{R}^{m}$, $\mathbb{E}_{f}[g - \beta^{\top}h] = \mathbb{E}_{f}[g]$ yielding unbiased estimator $I_n^{(\mathrm{cv})}(g,\beta) = \frac{1}{n} \sum_{i=1}^n \left(g(X_i) - \beta^\top h(X_i) \right)$

• Provided matrix $G = \mathbb{E}_f[hh^\top]$ is invertible, there is a unique $\beta^* \in \mathbb{R}^m$ for which the variance of $I_n^{(cv)}(g)$ is minimal: $\beta^* = \left(\mathbb{E}_f[hh^\top]\right)^{-1} \mathbb{E}_f[hg].$

• Casting the problem in an **Ordinary Least Squares** framework leads to the control variate estimate

 $I_n^{(\mathrm{cv})}(g) = I_n^{(\mathrm{cv})}(g, \hat{\beta}_n^{(\mathrm{cv})}) = \hat{\alpha}_n^{(\mathrm{cv})}$ where $\left(\hat{\alpha}_{n}^{(\mathrm{cv})}, \hat{\beta}_{n}^{(\mathrm{cv})}\right) \in \underset{(a,b)\in\mathbb{R}\times\mathbb{R}^{m}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1} \{g(X_{i}) - a - b^{\top}h(X_{i})\}^{2}$

Figure 1: L^2 projection of the integrand g onto the space of control variates $Span\{h_1, \ldots, h_m\}$.

A Quadrature Rule combining Control Variates and Adaptive Importance Sampling

Rémi Leluc¹, François Portier², Johan Segers³, Aigerim Zhuman³ LTCI, Télécom Paris, ² CREST, ENSAI, ³ LIDAM, ISBA, UCLouvain

AISCV ESTIMATOR AND WOLS

• AISCV estimate is the first coordinate of the solution to the **weighted least squares** problem

$$(\hat{\alpha}_n, \hat{\beta}_n) = \underset{a \in \mathbb{R}, b \in \mathbb{R}^m}{\operatorname{arg\,min}} \sum_{i=1}^n w_i \left[g(X_i) - a - b^\top h(X_i) \right]^2$$

• (a) (Exact integration) whenever *g* is of the form $\alpha + \beta^{\top} h$ for some $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}^m$, the error is **zero**, i.e., $\hat{\alpha}_n = \alpha = \int gf \, d\lambda$.

• (b) (Quadrature Rule) the estimate takes the form of a quadrature rule $\hat{\alpha}_n = \sum_{i=1}^n v_{n,i} g(X_i)$, for quadrature weights $v_{n,i}$ that do not depend **on the function** *g* and that can be computed by a single weighted least squares procedure.

• (c) (Bayesian) it can be computed even when fis known only up to a multiplicative constant.

• (d) (post-hoc scheme) CV can be brought into play in a *post-hoc* scheme, after generation of the particles and importance weights, and **this for any** AIS algorithm

AISCV ALGORITHM

- **Require:** integrand *g*, target density *f*, stages $T \in \mathbb{N}^*$, allocation policy $(n_t)_{t=1}^T$, initial density q_0 , update rule for the sampling policy
- 1: for t = 1, ..., T do
- Generate $X_{t,1}, \ldots, X_{t,n_t} \sim q_{t-1}$
- Compute the vector of weights $(w_{t,i})_{i=1}^{n_t}$ where 3:
- $w_{t,i} = f(X_{t,i})/q_{t-1}(X_{t,i})$ 4:
- Build CV matrix $H_t = (h_j(X_{t,i}))_{i=1,...,n_t}^{j=1,...,m}$ 5:
- Evaluate integrand on particles: $(g(X_{t,i}))_{i=1}^{n_t}$ 6:
- Update the sampler q_t based on all previous par-7: ticles $(X_{s,i} : s = 1, \dots, t; i = 1, \dots, n_s)$
- 8: end for

9: $(\hat{\alpha}_T, \hat{\beta}_T) = \arg \min \Phi(a, b)$ with $(a,b) \in \mathbb{R} imes \mathbb{R}^m$ 10: $\Phi(a,b) = \sum_{t=1}^{T} \sum_{i=1}^{n_t} w_{t,i} \left(g(X_{t,i}) - a - b^\top h(X_{t,i}) \right)^2$

11: return $I_n^{(\text{aiscv})}(g) = \hat{\alpha}_T$.

NON-ASYMPTOTIC BOUND

Theorem 1 (Concentration inequality). *Under assump*tions, for any $\delta \in (0, 1)$ and for all $n \ge C_1 c^2 B \log(10m/\delta)$, we have, with probability at least $1 - \delta$,

 $I_n^{(aisc}$

L	
	We
	wi
	1,
1:	\hat{eta}_n
2:	u_t
3:	Co
4:	Co
5.	۲P

CV IN PRACTICE

$$|v^{(r)}(g) - I| \leq C_2 \tau \sqrt{\frac{\log(10/\delta)}{n}} + C_3 c B \tau \frac{\log(10m/\delta)}{n},$$

where C_1 , C_2 , C_2 are universal constants and B = $\sup_{x:f(x)>0} \|\hbar(x)\|_2^2$. with $\hbar = G^{-1/2}h$.

AISCV POST-HOC SCHEME

Require: integrand $g, T \in \mathbb{N}^*$, allocation policy $(n_t)_{t=1}^T$, veights $(w_t)_{t=1}^T$ with $w_t = (w_{t,i})_{i=1}^{n_t}$, matrices $(H_t)_{t=1}^T$ with $H_t = (h_j(X_{t,i}))_{i=1,...,n_t}^{j=1,...,m}$, particles $(X_{t,i} : t =$ $..., T; i = 1, ..., n_t$ $\hat{\gamma}_n(\mathbf{1}_n) = \underset{b \in \mathbb{R}^m}{\operatorname{arg\,min}} \sum_{t=1}^T \sum_{i=1}^{n_t} w_{t,i} \left(1 - b^\top h(X_{t,i}) \right)^2$ $= \operatorname{diag}(w_t) [\mathbf{1}_{n_t} - H_t \hat{\beta}_n(\mathbf{1}_n)] \text{ for } t = 1, \dots, T$ Compute $s = \sum_{t=1}^{T} \sum_{i=1}^{n_t} u_{t,i}$ Compute $v_{t,i} = u_{t,i}/s$ for $1 \le t \le T; 1 \le i \le n_t$ 5: return $I_T^{(aiscv)}(g) = \sum_{t=1}^T \sum_{i=1}^{n_t} v_{t,i} g(X_{t,i})$

• Stein control variates [1] are built with operator \mathcal{L} on functions $\varphi \in \mathcal{C}^2(\mathbb{R}^d, \mathbb{R})$ to have $\mathbb{E}_f[\mathcal{L}\varphi] = 0$. $(\mathcal{L}\varphi)(x) = \Delta_x \varphi(x) + \nabla_x \varphi(x)^\top \nabla_x \log f(x).$ • $\nabla_x \log f(x)$ can either be directly computed (Bayesian regression) or with autodiff (Tensorflow and PyTorch).

BAYESIAN INFERENCE

• Given data \mathcal{D} and parameter of interest $\theta \in \mathbb{R}^d$, posterior integrals take the form $\int_{\mathbb{R}^d} g(\theta) p(\theta | \mathcal{D}) d\theta$, where $p(\theta|\mathcal{D}) \propto \ell(\mathcal{D}|\theta)\pi(\theta)$ is the posterior distribution, proportional to prior $\pi(\cdot)$ and a likelihood $\ell(\mathcal{D}|\cdot)$.

• (Linear regression) $\ell(X, y|\theta)$ is proportional to $(\sigma^2)^{-N/2} \exp(-(y-X\theta)^{\top}(y-X\theta)/(2\sigma^2))$, yielding the score function $\nabla_{\theta} \log \ell(X, y | \theta) = X^{\top} (y - X\theta) / (2\sigma^2).$ • (Logistic regression) $\ell(X, y|\theta) = \prod_{i=1}^{N} \sigma(\theta^{\top} x_i)^{y_i} (1 - 1)^{y_i} (1$ $\sigma(\theta^{\top} x_i))^{1-y_i}$. The score function is simply $\nabla_{\theta} \log \ell(X, y | \theta) = X^{\top} (y - \sigma(X \theta)).$

NUMERICAL EXPERIMENTS

 $(g)||_{2}^{2}$ $\hat{(b)}_{-10}$

Figure 2: Gaussian mixture density: Logarithm of $||\hat{I}(g) - \hat{I}(g)|$ $I(g)\|_{2}^{2}$ for g(x) = x with target isotropic f_{Σ} with d = 4 (left), d = 8 (right).

Figure 3: BLR: boxplots of $(\hat{I}(g) - I(g))/I(g)$ for $g(\theta) =$ $\sum_{i=1}^{d} \theta_i^2$ with datasets Housing (left) and Abalone (right).

REFERENCES

- 2017.

Louvain Institute of Data Analysis and Modeling in economics and statistics

• sampling policy is multivariate Student *t* of degree ν denoted by $\{q_{\mu,\Sigma_0} : \mu \in \mathbb{R}^d\}$ with $\Sigma_0 = \sigma_0 I_d(\nu - 2)/\nu$ and $\nu > 2, \sigma_0 > 0$. The mean μ_t is updated by the generalized method of moments (GMM), leading to $\mu_t = \left(\sum_{s=1}^t \sum_{i=1}^{n_s} w_{s,i} X_{s,i}\right) / \left(\sum_{s=1}^t \sum_{i=1}^{n_s} w_{s,i}\right) [2].$

• The allocation policy is fixed to $n_t = 1000$ and the number of stages is $T \in \{5; 10; 20; 30; 50\}$.

• $g(x) = x, f_{\Sigma}(x) = 0.5\Phi_{\Sigma}(x-\mu) + 0.5\Phi_{\Sigma}(x+\mu)$ where $\mu = (1, \ldots, 1)^{\top} / 2\sqrt{d}, \Sigma = I_d / d \text{ and } \Phi_{\Sigma} \text{ is pdf } \mathcal{N}(0, \Sigma).$

• (Bayesian LR) $g(\theta) = \sum_{i=1}^{d} \theta_i^2$ with Stein CV out of monomials with total degree $Q \in \{1; 2\}$.

[1] C. J. Oates, M. Girolami, and N. Chopin. Control functionals for Monte Carlo integration. *Journal of the Royal Statisti*cal Society: Series B (Statistical Methodology), 79(3):695–718,

[2] F. Portier and B. Delyon. Asymptotic optimality of adaptive importance sampling. *Advances in Neural Information* Processing Systems, 31, 2018.