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Introduction

Solve deterministic problems by a stochastic approach
Simple, Flexible, Scalable
Many fields of applications that include: physical science, engineering,
climate change, biology, applied statistics, artificial intelligence for
games, finance and business.
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Mathematical Background

Let (X ,A,P) be a probability space and let X be a random variable with
distribution P . Let f ∈ L2(P) be a square integrable, real-valued function
on X of which we would like to calculate the integral.
Goal: Estimate

P(f ) =

∫
X
f (x)P(dx) = EX∼P [f (X )] .

Monte-Carlo procedure:
Choose randomly some points, called nodes or particles, X1, . . . ,Xn in
S , n ∈ N?.
Evaluate the function at nodes f (X1), . . . , f (Xn).
Compute an approximation of P(f ) based on
((X1, f (X1)) , . . . , (Xn, f (Xn))).
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Monte-Carlo Estimator

Let X1, ...,Xn
i.i.d∼ P be an independent random sample from P on a

probability space (Ω,F ,P). The naive Monte-Carlo estimator of P(f )
is given by the empirical mean

Îmc
n (f ) = Pn(f ) =

1
n

n∑
i=1

f (Xi )

The Monte-Carlo estimator Pn(f ) of P(f ) is unbiased and has
variance σ2(f )/n, where σ2(f ) = P[(f − P(f ))2]. By the central limit
theorem, we have the convergence in distribution

√
n(Pn(f )− P(f ))

d−→
n→+∞

N (0, σ2(f ))
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Popular Methods

Antithetic variates

Control variates

Importance sampling

Sequential Monte-Carlo/MCMC

Books: Evans (Approximating integrals via Monte Carlo and deterministic
methods,2000), Robert (Monte Carlo Statistical Methods,2005),
Glasserman (Monte Carlo Methods in Financial Engineering,2003)
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Monte-Carlo Control Variates

If you wish to evaluate the (unknown) integral of a certain function
you better use functions of which you know the integral.
The control variates are functions h1, ...hm ∈ L2(P) with known
expectations. Assume that P(hk) = 0 for all k = 1, ...,m. Let
h = (h1, . . . , hm)T denote the Rm-valued function with the m control
variates as elements.
For β = (β1, . . . , βm)T ∈ Rm, P(f − βTh) = P(f ), so Pn(f − βTh) is
an unbiased estimator of P(f ).
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Control Variates estimator

Class of Monte-Carlo estimators

Î
(cv)
n (f , β) =

1
n

n∑
i=1

{
f (Xi )− βTh(Xi )

}
, (β ∈ Rm)

Minimize the variance to find optimal β

β?(f ) ∈ arg min
β∈Rm

P[(f −P(f )−βTh)2] = arg min
β∈Rm

||(f −P(f ))−βTh||2L2

Oracle estimator of the integral

α̂or
n (f ) = Pn[f − β?(f )Th].

If β∗(f ) would be known, the use of control variates would always
reduce the variance of the basic Monte Carlo estimator.
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Î
(cv)
n (f , β) =

1
n

n∑
i=1

{
f (Xi )− βTh(Xi )

}
, (β ∈ Rm)

Minimize the variance to find optimal β

β?(f ) ∈ arg min
β∈Rm

P[(f −P(f )−βTh)2] = arg min
β∈Rm

||(f −P(f ))−βTh||2L2

Oracle estimator of the integral

α̂or
n (f ) = Pn[f − β?(f )Th].

If β∗(f ) would be known, the use of control variates would always
reduce the variance of the basic Monte Carlo estimator.

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 12 / 34



Control Variates estimator

Class of Monte-Carlo estimators

Î
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Control Variates estimator

The integral P(f ) thus appears as the intercept of a linear regression
model with response f and explanatory variables h1, . . . , hm,

(P(f ), β?(f )) ∈ arg min
(α,β)∈R×Rm

P[(f − α− βTh)2]

(Hilbert projection) Normal equation: P(hhT )β?(f ) = P(hf )

Need to estimate the Gram matrix P(hhT ) and P(hf )

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 13 / 34



Control Variates estimator

The integral P(f ) thus appears as the intercept of a linear regression
model with response f and explanatory variables h1, . . . , hm,

(P(f ), β?(f )) ∈ arg min
(α,β)∈R×Rm

P[(f − α− βTh)2]

(Hilbert projection) Normal equation: P(hhT )β?(f ) = P(hf )

Need to estimate the Gram matrix P(hhT ) and P(hf )

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 13 / 34



Control Variates estimator

The integral P(f ) thus appears as the intercept of a linear regression
model with response f and explanatory variables h1, . . . , hm,

(P(f ), β?(f )) ∈ arg min
(α,β)∈R×Rm

P[(f − α− βTh)2]

(Hilbert projection) Normal equation: P(hhT )β?(f ) = P(hf )

Need to estimate the Gram matrix P(hhT ) and P(hf )

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 13 / 34



Control Variates estimator

The integral P(f ) thus appears as the intercept of a linear regression
model with response f and explanatory variables h1, . . . , hm,

(P(f ), β?(f )) ∈ arg min
(α,β)∈R×Rm

P[(f − α− βTh)2]

(Hilbert projection) Normal equation: P(hhT )β?(f ) = P(hf )

Need to estimate the Gram matrix P(hhT ) and P(hf )

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 13 / 34



Ordinary Least Squares Monte-Carlo (OLSMC)

Empirical risk minimization paradigm (Replace P by measure Pn)(
α̂ols
n (f ), β̂ols

n (f )
)
∈ arg min

(α,β)∈R×Rm

‖f (n) − α1n − Hβ‖22

f (n) = (f (X1), . . . , f (Xn))T ∈ Rn is the vector of evaluations of f .
1n = (1, . . . , 1)T ∈ Rn, ‖ · ‖2 denotes the Euclidean norm and H is
the random n ×m matrix defined by H =

(
hj(Xi )

)
i=1,...,n
j=1,...,m

.

α̂ols
n (f ) = Pn[f − β̂ols

n (f )Th] =
n∑

i=1

wn,i f (Xi )
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Control Variates in the literature

Stein method to build control functionals with non-parametric
extension ↪→ Control functionals for Monte Carlo integration,
Oates, C. J., M. Girolami, and N. Chopin (2014)
Central Limit Theorem m→ +∞, n→ +∞ ↪→ Monte Carlo
integration with a growing number of control variates, Portier,
F. and J. Segers (2018)
Langevin diffusion in MCMC methods ↪→ Diffusion approximations
and control variates for MCMC, Brosse, N., A. Durmus, S. Meyn,
É. Moulines, and A. Radhakrishnan(2018)
Variance reduction via regularization ↪→ Regularised Zero-Variance
Control Variates for High-Dimensional Variance Reduction,
South, L. F., C. J. Oates, A. Mira, and C. Drovandi (2018)
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F. and J. Segers (2018)
Langevin diffusion in MCMC methods ↪→ Diffusion approximations
and control variates for MCMC, Brosse, N., A. Durmus, S. Meyn,
É. Moulines, and A. Radhakrishnan(2018)
Variance reduction via regularization ↪→ Regularised Zero-Variance
Control Variates for High-Dimensional Variance Reduction,
South, L. F., C. J. Oates, A. Mira, and C. Drovandi (2018)
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Limitations of OLSMC

Too many variables or/and few samples (case m >> n)

Dependence among variables → very large coefficients

How to avoid those problems ?

Bet on sparsity
variable selection !
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Lasso Monte-Carlo (LASSOMC)

Adding `1-penalization leads to

(
α̂lasso
n (f ), β̂lasso

n (f )
)

= arg min
(α,β)∈R×Rm

1
2n
‖f (n) − α1n − Hβ‖22 + λ‖β‖1

Choice of the regularization parameter λ.
Lasso takes advantage of sparse regression models.The active set
associated to the coefficient vector β ∈ Rm is

S(β) = {j = 1, . . . ,m : βj 6= 0}.

The number of elements in S? = S(β?(f )), denoted by `? := |S?|,
quantifies the level of sparsity associated to the regression model.
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Least Square Lasso Monte-Carlo (LSLASSOMC)

Lasso to select the active variables among a large number of control
variates, then compute OLSMC using only the variables selected at
the previous stage.
Let Ŝ = {k ∈ {1, . . . ,m} : β̂lasso

N,k (f ) > 0} denote the estimated active
set of control variates based on the subsample of size N. The
LSLASSOMC estimate α̂lslasso

n (f ) of P(f ) is defined by(
α̂lslasso
n (f ), β̂lslasso

n (f )
)
∈ arg min

(α,β)∈R×R ˆ̀

‖f (n) − α1n − HŜβ‖
2
2
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5 Numerical Experiments
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Non-asymptotic Error Analysis

Assumptions: sub-gaussian residuals with factor τ , linearly independent
and bounded control variates, appropriate λ
(Uh = maxj=1,...,m supx∈X |hj(x)|, γ = λmin(G ), ζh = U2

h/γ)

Concentration inequalities (Leluc,Portier,Segers, 2019)
For δ ∈ (0, 1) with probability at least 1− δ,

|α̂ols
n (f )− P(f )| ≤

√
2 log(8/δ)

τ√
n

+ 27m log(8m/δ)ζh
τ

n

|α̂lasso
n (f )− P(f )| ≤

√
2 log(8/δ)

τ√
n

+ 680`? log(8m/δ)(U2
h/γ

?)
τ

n

|α̂lslasso
n (f )− P(f )| ≤

√
2 log(16/δ)

τ√
n

+ 27`? log(16`?/δ)ζ?h
τ

n
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Numerical experiments

Different integrands on [0, 1]d :

ϕ(x1, . . . , xd) = 1 + sin

(
π

(
2
d

d∑
i=1

xi − 1

))

∀1 ≤ j ≤ d , fj(x1, . . . , xd) =

j∏
i=1

(2/π)1/2x−1
i exp

(
−(log(xi )

2/2
)
,

gj(x1, . . . , xd) =

j∏
i=1

log(2)

2xi−1 = log(2)j2
∑j

i=1(1−xi ).

Methods in competition: OLSMC, LassoMC, LSLassoMC(X)
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Numerical experiments

hj(x) = Lj(2x − 1) for x ∈ [0, 1], with Lj the univariate Legendre
polynomial (Legendre function of the first kind) of degree j .
For a multi-index ` = (`1, . . . , `d) in {0, 1, . . . , k}d \ {(0, . . . , 0)},
build

h`(x1, . . . , xd) =
d∏

j=1

h`j (xj) = h`1(x1)× . . .× h`d (xd)

Sort in ascending order according to the total degree
∑d

j=1 `j .

d k
Degree threshold

1 3 5 10 12
3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Table: Number of control variates by degrees

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 23 / 34



Numerical experiments

hj(x) = Lj(2x − 1) for x ∈ [0, 1], with Lj the univariate Legendre
polynomial (Legendre function of the first kind) of degree j .

For a multi-index ` = (`1, . . . , `d) in {0, 1, . . . , k}d \ {(0, . . . , 0)},
build

h`(x1, . . . , xd) =
d∏

j=1

h`j (xj) = h`1(x1)× . . .× h`d (xd)

Sort in ascending order according to the total degree
∑d

j=1 `j .

d k
Degree threshold

1 3 5 10 12
3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Table: Number of control variates by degrees

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 23 / 34



Numerical experiments

hj(x) = Lj(2x − 1) for x ∈ [0, 1], with Lj the univariate Legendre
polynomial (Legendre function of the first kind) of degree j .
For a multi-index ` = (`1, . . . , `d) in {0, 1, . . . , k}d \ {(0, . . . , 0)},
build

h`(x1, . . . , xd) =
d∏

j=1

h`j (xj) = h`1(x1)× . . .× h`d (xd)

Sort in ascending order according to the total degree
∑d

j=1 `j .

d k
Degree threshold

1 3 5 10 12
3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Table: Number of control variates by degrees

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 23 / 34



Numerical experiments

hj(x) = Lj(2x − 1) for x ∈ [0, 1], with Lj the univariate Legendre
polynomial (Legendre function of the first kind) of degree j .
For a multi-index ` = (`1, . . . , `d) in {0, 1, . . . , k}d \ {(0, . . . , 0)},
build

h`(x1, . . . , xd) =
d∏

j=1

h`j (xj) = h`1(x1)× . . .× h`d (xd)

Sort in ascending order according to the total degree
∑d

j=1 `j .

d k
Degree threshold

1 3 5 10 12
3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Table: Number of control variates by degrees

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 23 / 34



Numerical experiments

hj(x) = Lj(2x − 1) for x ∈ [0, 1], with Lj the univariate Legendre
polynomial (Legendre function of the first kind) of degree j .
For a multi-index ` = (`1, . . . , `d) in {0, 1, . . . , k}d \ {(0, . . . , 0)},
build

h`(x1, . . . , xd) =
d∏

j=1

h`j (xj) = h`1(x1)× . . .× h`d (xd)

Sort in ascending order according to the total degree
∑d

j=1 `j .

d k
Degree threshold

1 3 5 10 12
3 12 3 19 55 285 454
5 10 5 55 251 3 001 6 157
8 3 8 164 1 214 20 993 36 813

Table: Number of control variates by degrees

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 23 / 34



Numerical experiments

λ is selected by imposing a lower bound and an upper bound on the
number of activated random variables → dichotomic search.
initialize λ = λmax and decrease it to have more and more control
variates until their number lies in the range [c1

√
n, c2
√
n].

n N b3
√
nc b12

√
nc

2 000 700 134 536
5 000 1 000 212 848
10 000 2 000 300 1 200

Table: Parameters setting with range (c1
√
n, c2
√
n) of selected control variates.
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Figure: ϕ, d = 3, n = 10 000,N = 2 000.
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Figure: g3, d = 5, n = 2 000,N = 700.
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Figure: f1, d = 5, n = 5 000,N = 1 000.
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Figure: g4, d = 8, n = 2 000,N = 700.
R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 28 / 34



Outline

1 Introduction

2 Mathematical Background

3 Monte-Carlo Control Variates

4 Non-Asymptotic Error Analysis

5 Numerical Experiments

6 Conclusion

R. Leluc (Télécom Paris) Control variates selection June 28th - July 10th 2020 29 / 34



Conclusion

The particular variance reduction technique of control variates offers
many advantages as it relies on a simple and intuitive paradigm.
Regularizing the ordinary least squares estimator by preselecting
appropriate control variates via the Lasso turns out to increase the
accuracy without additional computational cost.
The proposed numerical method performs better than any other state
of the art method.
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Questions and Answers
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Assumptions

The control variates h1, . . . , hm ∈ L2(P) are linearly independent.
As a consequence, the Gram matrix G := P(hhT ) ∈ Rm is positive
definite and its smallest eigenvalue γ := λmin(G ) is positive.
The residual function ε = f − P(f )− β?(f )Th satisfies ε ∈ G(τ2) for
some τ > 0, that is,

∫
X exp(λx) ε(x)P(dx) ≤ exp(λ2τ2/2), ∀λ ∈ R.

The control variates h1, . . . , hm ∈ L2(P) are uniformly bounded. Put
Uh := maxj=1,...,m supx∈X |hj(x)|
We have orthogonality between active and inactive control
variates P(hjhk) = 0 for all j ∈ {1, . . . ,m} \ S? and all k ∈ S?.
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Support recovery

Assumptions: sub-gaussian residuals, linearly independent and
bounded control variates, appropriate λ
(Uh = maxj=1,...,m supx∈X |hj(x)|, γ = λmin(G ))

Support recovery LASSOMC (Leluc,Portier,Segers, 2019)

For all δ ∈ (0, 1), all integer n such that n ≥ 70(`?U2
h/γ

?)2 log(10`?m/δ),
and all λ such that

17Uh

√
log(10m/δ)τ/

√
n ≤ λ ≤ (γ?/(3

√
`?)) min

k∈S?
|β?k(f )|,

it holds that, with probability at least 1− δ, the LASSO solution β̂lasso
n (f )

is unique and the true active set is recovered, supp(β̂lasso
n (f )) = S?.
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