
Homomorphic Encryption and Bootstrapping

Njaka Andriamandratomanana, Elie Chedemail, Adéchola
Kouande, Rémi Leluc, Thi Thu Quyen Nguyen

Supervisors: Florian Méhats, Mohammed Lemou, Philippe
Chartier

SEME Rennes, May 02 - May 06, 2022

May 6, 2022

Introduction

Homomorphic Encryption

Learning With Errors (LWE) encryption/decryption

RLWE encryption

Bootstrap

1 / 21

Cryptography in History

1900-1950: Symmetric Encryption (same key) (Enigma,
Shannon Information theory, ...)

1970s: Asymmetric Encryption (encryption with public key,
decryption with private key)

Only thing people did with crypted data ... was decrypt it...

Today (big data era), we want to perform (cloud) computing
on encrypted data, e.g. for machine learning applications

Need to be able to perform sums and products on encrypted
data

2 / 21

Cryptography in History

1900-1950: Symmetric Encryption (same key) (Enigma,
Shannon Information theory, ...)

1970s: Asymmetric Encryption (encryption with public key,
decryption with private key)

Only thing people did with crypted data ... was decrypt it...

Today (big data era), we want to perform (cloud) computing
on encrypted data, e.g. for machine learning applications

Need to be able to perform sums and products on encrypted
data

2 / 21

Cryptography in History

1900-1950: Symmetric Encryption (same key) (Enigma,
Shannon Information theory, ...)

1970s: Asymmetric Encryption (encryption with public key,
decryption with private key)

Only thing people did with crypted data ... was decrypt it...

Today (big data era), we want to perform (cloud) computing
on encrypted data, e.g. for machine learning applications

Need to be able to perform sums and products on encrypted
data

2 / 21

Cryptography in History

1900-1950: Symmetric Encryption (same key) (Enigma,
Shannon Information theory, ...)

1970s: Asymmetric Encryption (encryption with public key,
decryption with private key)

Only thing people did with crypted data ... was decrypt it...

Today (big data era), we want to perform (cloud) computing
on encrypted data, e.g. for machine learning applications

Need to be able to perform sums and products on encrypted
data

2 / 21

Homomorphic Encryption

Let φ be an encryption:

φ : ({plaintext},+,×) −→ ({ciphertext},⊕,⊗)

Homomorphic encryption (HE) preserves either addition or
multiplication of two messages, ie.

φ(m1 +m2) = φ(m1)⊕ φ(m2), or

φ(m1 ×m2) = φ(m1)⊗ φ(m2).

Fully homomorphic encryption (FHE) preserves both
addition and multiplication.

3 / 21

Homomorphic Encryption

Let φ be an encryption:

φ : ({plaintext},+,×) −→ ({ciphertext},⊕,⊗)

Homomorphic encryption (HE) preserves either addition or
multiplication of two messages,

ie.

φ(m1 +m2) = φ(m1)⊕ φ(m2), or

φ(m1 ×m2) = φ(m1)⊗ φ(m2).

Fully homomorphic encryption (FHE) preserves both
addition and multiplication.

3 / 21

Homomorphic Encryption

Let φ be an encryption:

φ : ({plaintext},+,×) −→ ({ciphertext},⊕,⊗)

Homomorphic encryption (HE) preserves either addition or
multiplication of two messages, ie.

φ(m1 +m2) = φ(m1)⊕ φ(m2), or

φ(m1 ×m2) = φ(m1)⊗ φ(m2).

Fully homomorphic encryption (FHE) preserves both
addition and multiplication.

3 / 21

Homomorphic Encryption

Let φ be an encryption:

φ : ({plaintext},+,×) −→ ({ciphertext},⊕,⊗)

Homomorphic encryption (HE) preserves either addition or
multiplication of two messages, ie.

φ(m1 +m2) = φ(m1)⊕ φ(m2), or

φ(m1 ×m2) = φ(m1)⊗ φ(m2).

Fully homomorphic encryption (FHE) preserves both
addition and multiplication.

3 / 21

Learning With Errors (LWE) encryption/decryption

• For n, q, t ∈ N∗ with t|q and a message m ∈ Zt ⊂ Zq, the LWE
encryption with the key s⃗ ← χkey (Zn

q) of m is defined as:

LWEq,s⃗(m) := (a⃗, b) = (a⃗, ⟨a⃗, s⃗⟩+ m̃ + e) ∈ Zn+1
q ,

where a⃗← Zn
q, error e ← χerror (Zq) and m̃ = q

tm.

• The decryption of a ciphertext (a⃗, b) of m is

LWE−1(a⃗, b) := ⌈ t
q
(b − ⟨a⃗, s⃗⟩)⌋ ∈ Zq.

4 / 21

Learning With Errors (LWE) encryption/decryption

• For n, q, t ∈ N∗ with t|q and a message m ∈ Zt ⊂ Zq, the LWE
encryption with the key s⃗ ← χkey (Zn

q) of m is defined as:

LWEq,s⃗(m) := (a⃗, b) = (a⃗, ⟨a⃗, s⃗⟩+ m̃ + e) ∈ Zn+1
q ,

where a⃗← Zn
q, error e ← χerror (Zq) and m̃ = q

tm.

• The decryption of a ciphertext (a⃗, b) of m is

LWE−1(a⃗, b) := ⌈ t
q
(b − ⟨a⃗, s⃗⟩)⌋ ∈ Zq.

4 / 21

Learning With Errors (LWE) encryption/decryption

• Let ErrLWE ((a⃗, b),m) = t
q (b − ⟨a⃗, s⃗⟩)−m = t

q e. If

| tq e| ∈ [0, 1/2] then LWE−1(a⃗, b) = m → Successful decryption.

On the other hand we have,

LWEq,s⃗(m1) + LWEq,s⃗(m2)

= (a⃗1, b1) + (a⃗2, b2) = (a⃗1 + a⃗2, b1 + b2)

= (a⃗1 + a⃗2, ⟨a⃗1 + a⃗2, s⟩+ (m̃1 + m̃2) + (e1 + e2)︸ ︷︷ ︸
sum noise

)

= LWEq,s⃗(m1 +m2).

•LWE encryption is homomorphic at the cost of accumulated
noise which can be reduced with bootstrapping.

5 / 21

Learning With Errors (LWE) encryption/decryption

• Let ErrLWE ((a⃗, b),m) = t
q (b − ⟨a⃗, s⃗⟩)−m = t

q e. If

| tq e| ∈ [0, 1/2] then LWE−1(a⃗, b) = m → Successful decryption.

On the other hand we have,

LWEq,s⃗(m1) + LWEq,s⃗(m2)

= (a⃗1, b1) + (a⃗2, b2) = (a⃗1 + a⃗2, b1 + b2)

= (a⃗1 + a⃗2, ⟨a⃗1 + a⃗2, s⟩+ (m̃1 + m̃2) + (e1 + e2)︸ ︷︷ ︸
sum noise

)

= LWEq,s⃗(m1 +m2).

•LWE encryption is homomorphic at the cost of accumulated
noise which can be reduced with bootstrapping.

5 / 21

Learning With Errors (LWE) encryption/decryption

• Let ErrLWE ((a⃗, b),m) = t
q (b − ⟨a⃗, s⃗⟩)−m = t

q e. If

| tq e| ∈ [0, 1/2] then LWE−1(a⃗, b) = m → Successful decryption.

On the other hand we have,

LWEq,s⃗(m1) + LWEq,s⃗(m2)

= (a⃗1, b1) + (a⃗2, b2) = (a⃗1 + a⃗2, b1 + b2)

= (a⃗1 + a⃗2, ⟨a⃗1 + a⃗2, s⟩+ (m̃1 + m̃2) + (e1 + e2)︸ ︷︷ ︸
sum noise

)

= LWEq,s⃗(m1 +m2).

•LWE encryption is homomorphic at the cost of accumulated
noise which can be reduced with bootstrapping.

5 / 21

RLWE encryption: work with polynomials

• For N,Q, t ∈ N∗ with t|q and a message m(X) ∈ RQ = R/QR
with R = Z[X]/

(
XN + 1

)
, the RLWE encryption with the key

z(X)← χkey (RQ) of m ∈ Rt is defined as:

RLWEQ,z(m) := (a,b) = (a, a · z + m̃ + e) ∈ R2
Q ,

where a ← RQ , error e ← χerror (RQ) and m̃ = Q
t m. RLWE

encryption is linearly homomorphic.

6 / 21

Multiplicative RLWE encryption

To multiply by arbitrary ring elements, we introduce the
encryption scheme

RLWE ′
z(m) = RLWEz(m,RLWEz(Bm), . . . ,RLWEz(B

k−1m)).

Finally, we define the encryption scheme

RGSWz(m) = (RLWE ′
z(−z · m),RLWE ′

z(m)).

We have the multiplication operation

⋄ : RLWE × RGSW −→ RLWE

Lemma

For two messages m0,m1 ∈ RQ with m1 small, we have:

RLWEz(m0) ⋄ RGSWz(m1) = RLWEz(m0 ·m1)

7 / 21

Multiplicative RLWE encryption

To multiply by arbitrary ring elements, we introduce the
encryption scheme

RLWE ′
z(m) = RLWEz(m,RLWEz(Bm), . . . ,RLWEz(B

k−1m)).

Finally, we define the encryption scheme

RGSWz(m) = (RLWE ′
z(−z · m),RLWE ′

z(m)).

We have the multiplication operation

⋄ : RLWE × RGSW −→ RLWE

Lemma

For two messages m0,m1 ∈ RQ with m1 small, we have:

RLWEz(m0) ⋄ RGSWz(m1) = RLWEz(m0 ·m1)

7 / 21

Multiplicative RLWE encryption

To multiply by arbitrary ring elements, we introduce the
encryption scheme

RLWE ′
z(m) = RLWEz(m,RLWEz(Bm), . . . ,RLWEz(B

k−1m)).

Finally, we define the encryption scheme

RGSWz(m) = (RLWE ′
z(−z · m),RLWE ′

z(m)).

We have the multiplication operation

⋄ : RLWE × RGSW −→ RLWE

Lemma

For two messages m0,m1 ∈ RQ with m1 small, we have:

RLWEz(m0) ⋄ RGSWz(m1) = RLWEz(m0 ·m1)

7 / 21

Multiplicative RLWE encryption

To multiply by arbitrary ring elements, we introduce the
encryption scheme

RLWE ′
z(m) = RLWEz(m,RLWEz(Bm), . . . ,RLWEz(B

k−1m)).

Finally, we define the encryption scheme

RGSWz(m) = (RLWE ′
z(−z · m),RLWE ′

z(m)).

We have the multiplication operation

⋄ : RLWE × RGSW −→ RLWE

Lemma

For two messages m0,m1 ∈ RQ with m1 small, we have:

RLWEz(m0) ⋄ RGSWz(m1) = RLWEz(m0 ·m1)

7 / 21

Numerical implementation

• Implement functions RLWE, RLWE−1, RGSW, ⋄

• Need to work on Rq = Zq[X]/(XN + 1), implement product and
tensor product of matrices of polynomials (links with FFT).

• Test code/decode functions on Nexp = 100 independent runs and
test the evolution of the succes rate recovery with different
parameters N ∈ {29; 210} and q ∈ {24; 25; 26; 27; 28} and
σ ∈ [0; 10], to see the effect of noise

8 / 21

Experiments code/decode RLWE, N ∈ {29, 210}, and
σ = 0.5 : 5

9 / 21

Experiments Sum RLWE, N ∈ {29, 210} and σ = 0.5 : 10

2 4 6 8 10
Sigma

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
 ra

te

N = 29

q=16
q=32
q=64
q=128
q=256

2 4 6 8 10
Sigma

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
 ra

te

N = 210

q=16
q=32
q=64
q=128
q=256

10 / 21

Experiments Prod RLWE, N ∈ {29, 210} and σ = 0.01 : 0.3

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Sigma

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
 ra

te

N = 29

q=16
q=64
q=256

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Sigma

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
 ra

te

N = 210

q=16
q=64
q=256

11 / 21

Hint of Bootstrap: Trick of working in Zq[X]/
(
XN + 1

)
For a polynomial w(X) =

∑N−1
i=0 wiX

i and any u ∈ Zq, we have

coeff0(X
−uw(X)) = coeffu(w(X)) = wu

Recall that b − ⟨a⃗, s⃗⟩ = m̃ + e so that with u = b − ⟨a⃗, s⃗⟩

coeff0(X
−(b−⟨a⃗,s⃗⟩)w(X)) = wm̃+e = wm̃

as soon as w(X) is well-chosen with coefficients equal on subsets.
GOAL: write this formula with ciphertext → bootstrap scheme
• Of course you cannot reveal the secret key s... but you can
publicly reveal an encrpyption Encs′(s) of it !
• Bootstrap = Use Encryption(keys) + tricks with polynomials

12 / 21

Hint of Bootstrap: Trick of working in Zq[X]/
(
XN + 1

)
For a polynomial w(X) =

∑N−1
i=0 wiX

i and any u ∈ Zq, we have

coeff0(X
−uw(X)) = coeffu(w(X)) = wu

Recall that b − ⟨a⃗, s⃗⟩ = m̃ + e so that with u = b − ⟨a⃗, s⃗⟩

coeff0(X
−(b−⟨a⃗,s⃗⟩)w(X)) = wm̃+e = wm̃

as soon as w(X) is well-chosen with coefficients equal on subsets.

GOAL: write this formula with ciphertext → bootstrap scheme
• Of course you cannot reveal the secret key s... but you can
publicly reveal an encrpyption Encs′(s) of it !
• Bootstrap = Use Encryption(keys) + tricks with polynomials

12 / 21

Hint of Bootstrap: Trick of working in Zq[X]/
(
XN + 1

)
For a polynomial w(X) =

∑N−1
i=0 wiX

i and any u ∈ Zq, we have

coeff0(X
−uw(X)) = coeffu(w(X)) = wu

Recall that b − ⟨a⃗, s⃗⟩ = m̃ + e so that with u = b − ⟨a⃗, s⃗⟩

coeff0(X
−(b−⟨a⃗,s⃗⟩)w(X)) = wm̃+e = wm̃

as soon as w(X) is well-chosen with coefficients equal on subsets.
GOAL: write this formula with ciphertext → bootstrap scheme
• Of course you cannot reveal the secret key s... but you can
publicly reveal an encrpyption Encs′(s) of it !
• Bootstrap = Use Encryption(keys) + tricks with polynomials

12 / 21

Bootstrap

This is the bootstrap for noise reduction in LWE encryption.

Figure: Bootstrapping steps

13 / 21

Bootstrap Procedure

INPUT: Cipher LWEs(m) = (a⃗, b) with error e
• Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→

(az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

• Step 2: Key switching

(az(X), bz(X)) −→ (as(X), bs(X)) = RLWEs(X)(X
−b+⟨a⃗,s⃗⟩ · w(X))

• Step 3: Extraction

(as(X), bs(X)) −→ (a⃗, b) = LWEs(m)

OUTPUT: Cipher LWEs(m) = (a⃗, b) with error e ′ < e

14 / 21

Bootstrap Procedure

INPUT: Cipher LWEs(m) = (a⃗, b) with error e
• Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

• Step 2: Key switching

(az(X), bz(X)) −→

(as(X), bs(X)) = RLWEs(X)(X
−b+⟨a⃗,s⃗⟩ · w(X))

• Step 3: Extraction

(as(X), bs(X)) −→ (a⃗, b) = LWEs(m)

OUTPUT: Cipher LWEs(m) = (a⃗, b) with error e ′ < e

14 / 21

Bootstrap Procedure

INPUT: Cipher LWEs(m) = (a⃗, b) with error e
• Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

• Step 2: Key switching

(az(X), bz(X)) −→ (as(X), bs(X)) = RLWEs(X)(X
−b+⟨a⃗,s⃗⟩ · w(X))

• Step 3: Extraction

(as(X), bs(X)) −→

(a⃗, b) = LWEs(m)

OUTPUT: Cipher LWEs(m) = (a⃗, b) with error e ′ < e

14 / 21

Bootstrap Procedure

INPUT: Cipher LWEs(m) = (a⃗, b) with error e
• Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

• Step 2: Key switching

(az(X), bz(X)) −→ (as(X), bs(X)) = RLWEs(X)(X
−b+⟨a⃗,s⃗⟩ · w(X))

• Step 3: Extraction

(as(X), bs(X)) −→ (a⃗, b) = LWEs(m)

OUTPUT: Cipher LWEs(m) = (a⃗, b) with error e ′ < e

14 / 21

Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

Figure: Blind Rotation X uw(X)

• u = −b + ⟨a⃗, s⃗⟩.
• Since ⟨a⃗, s⃗⟩ =

∑
i ai si , X

⟨a⃗,s⃗⟩ =
∏

i X
ai si ,

RLWEz (X
−b+⟨a⃗,⃗s⟩w) = RLWEz (X

−bw) ⋄ RGSWz (X
a0s0) · · · ⋄ RGSWz (X

an−1sn−1)

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

15 / 21

Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

Figure: Blind Rotation X uw(X)

• u = −b + ⟨a⃗, s⃗⟩.

• Since ⟨a⃗, s⃗⟩ =
∑

i ai si , X
⟨a⃗,s⃗⟩ =

∏
i X

ai si ,

RLWEz (X
−b+⟨a⃗,⃗s⟩w) = RLWEz (X

−bw) ⋄ RGSWz (X
a0s0) · · · ⋄ RGSWz (X

an−1sn−1)

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

15 / 21

Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

Figure: Blind Rotation X uw(X)

• u = −b + ⟨a⃗, s⃗⟩.
• Since ⟨a⃗, s⃗⟩ =

∑
i ai si , X

⟨a⃗,s⃗⟩ =
∏

i X
ai si ,

RLWEz (X
−b+⟨a⃗,⃗s⟩w) = RLWEz (X

−bw)

⋄ RGSWz (X
a0s0) · · · ⋄ RGSWz (X

an−1sn−1)

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

15 / 21

Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

Figure: Blind Rotation X uw(X)

• u = −b + ⟨a⃗, s⃗⟩.
• Since ⟨a⃗, s⃗⟩ =

∑
i ai si , X

⟨a⃗,s⃗⟩ =
∏

i X
ai si ,

RLWEz (X
−b+⟨a⃗,⃗s⟩w) = RLWEz (X

−bw) ⋄ RGSWz (X
a0s0) · · · ⋄ RGSWz (X

an−1sn−1)

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

15 / 21

Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

Figure: Blind Rotation X uw(X)

• u = −b + ⟨a⃗, s⃗⟩.
• Since ⟨a⃗, s⃗⟩ =

∑
i ai si , X

⟨a⃗,s⃗⟩ =
∏

i X
ai si ,

RLWEz (X
−b+⟨a⃗,⃗s⟩w) = RLWEz (X

−bw) ⋄ RGSWz (X
a0s0) · · · ⋄ RGSWz (X

an−1sn−1)

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

15 / 21

Step 1: Blind rotation with further decompostion

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

•X ⟨a⃗,s⃗⟩ =
∏

i X
ai si =

∏
i ,j X

ai,jB
j si with ai =

∑
j ai ,jB

j

BKi ,j ,l = RGSWz(X
lB j si), 0 ≤ i ≤ n, 0 ≤ j < logB(q), 0 ≤ l < B.

16 / 21

Step 1: Blind rotation with further decompostion

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

•X ⟨a⃗,s⃗⟩ =
∏

i X
ai si =

∏
i ,j X

ai,jB
j si with ai =

∑
j ai ,jB

j

BKi ,j ,l = RGSWz(X
lB j si), 0 ≤ i ≤ n, 0 ≤ j < logB(q), 0 ≤ l < B.

16 / 21

Step 1: Blind rotation with further decompostion

• The Bootstrap Keys are publicly available

BKi ,j = RGSWz(X
jsi), 0 ≤ i ≤ n, 0 ≤ j < q

•X ⟨a⃗,s⃗⟩ =
∏

i X
ai si =

∏
i ,j X

ai,jB
j si with ai =

∑
j ai ,jB

j

BKi ,j ,l = RGSWz(X
lB j si), 0 ≤ i ≤ n, 0 ≤ j < logB(q), 0 ≤ l < B.

16 / 21

Bootstrap Procedure

INPUT: Cipher LWEs(m) = (a⃗, b) with error e
• Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

• Step 2: Key switching

(az(X), bz(X)) −→ (as(X), bs(X)) = RLWEs(X)(X
−b+⟨a⃗,s⃗⟩ · w(X))

• Step 3: Extraction

(as(X), bs(X)) −→ (a⃗, b) = LWEs(m)

OUTPUT: Cipher LWEs(m) = (a⃗, b) with error e ′ < e

17 / 21

Step 2: Key switching

Key switching operation converts a ciphertext RLWEz1(m) of a
message m ∈ RQ encrypted by a secret key z1 ∈ RQ to a
ciphertext RLWEz2(m) encrypted by a new secret key z2 ∈ RQ .

Algorithm 1: Key Switching in RLWE

Inputs : (a,b) = RLWEz1(m), z2

Outputs: (a′,b′) = RLWEz2(m)

1 Compute RLWEz2(B
j · z1) =: (KSa

j ,KS
b
j) for

j = 0, · · · ,K := logB Q − 1
2 Write a =

∑K
j=0 αjB

j where αj =
∑N−1

i=0 ai ,jX
i such that

|ai ,j | ≤ B − 1

3 Return (a′,b′) =
(
−
∑K

j=1 αj · KSa
j ,b−

∑K
j=1 αj · KSb

j

)
18 / 21

Bootstrap Procedure

INPUT: Cipher LWEs(m) = (a⃗, b) with error e
• Step 1: Blind rotation

(a⃗, b) = LWEs(m) −→ (az(X), bz(X)) = RLWEz(X)(X
−b+⟨a⃗,s⃗⟩·w(X))

• Step 2: Key switching

(az(X), bz(X)) −→ (as(X), bs(X)) = RLWEs(X)(X
−b+⟨a⃗,s⃗⟩ · w(X))

• Step 3: Extraction

(as(X), bs(X)) −→ (a⃗, b) = LWEs(m)

OUTPUT: Cipher LWEs(m) = (a⃗, b) with error e ′ < e

19 / 21

Step 3: Extraction

Let RLWEs(X)(m(X)) = (a(X),b(X)) ∈ RQ . We have

b(X) = a(X) · s(X) + m̃(X) + e(X)

At the i th coefficient we have:

bi =
N−1∑
k=0

ai−ksk + m̃i + ei

= ⟨ιi (a), s⟩+ m̃i + ei

where ιi (a) is the i th anti-cyclic permutation of coefficients of a.
Since e(X) is small, so is ei , thus (ιi (a), bi) is a LWEs encryption
of m.

20 / 21

Step 3: Extraction

Let RLWEs(X)(m(X)) = (a(X),b(X)) ∈ RQ . We have

b(X) = a(X) · s(X) + m̃(X) + e(X)

At the i th coefficient we have:

bi =
N−1∑
k=0

ai−ksk + m̃i + ei

= ⟨ιi (a), s⟩+ m̃i + ei

where ιi (a) is the i th anti-cyclic permutation of coefficients of a.

Since e(X) is small, so is ei , thus (ιi (a), bi) is a LWEs encryption
of m.

20 / 21

Step 3: Extraction

Let RLWEs(X)(m(X)) = (a(X),b(X)) ∈ RQ . We have

b(X) = a(X) · s(X) + m̃(X) + e(X)

At the i th coefficient we have:

bi =
N−1∑
k=0

ai−ksk + m̃i + ei

= ⟨ιi (a), s⟩+ m̃i + ei

where ιi (a) is the i th anti-cyclic permutation of coefficients of a.
Since e(X) is small, so is ei , thus (ιi (a), bi) is a LWEs encryption
of m.

20 / 21

Conclusion and Bootstrap Today

Figure: Craig Gentry (father of Bootstrap !)

• 2009: Craig Gentry Phd dissertation on Bootstrap for FHE

• 2014: Léo Ducas and Daniele Micciancio ”Bootstrapping
Homomorphic Encryption in less than a second”
• 2017: Chilloti et al. obtained speed up from less than 1 s to less
than 0.1 s + reduce the 1 GB bootstrapping key size to 24 MB,
preserving the same security levels.
• New perspectives: parallel and distributed computing, bootstrap
on GPU’s (2021), faster and faster ... FHE is active field of
research!

21 / 21

Conclusion and Bootstrap Today

Figure: Craig Gentry (father of Bootstrap !)

• 2009: Craig Gentry Phd dissertation on Bootstrap for FHE
• 2014: Léo Ducas and Daniele Micciancio ”Bootstrapping
Homomorphic Encryption in less than a second”
• 2017: Chilloti et al. obtained speed up from less than 1 s to less
than 0.1 s + reduce the 1 GB bootstrapping key size to 24 MB,
preserving the same security levels.
• New perspectives: parallel and distributed computing, bootstrap
on GPU’s (2021), faster and faster ... FHE is active field of
research! 21 / 21

