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Introduction

Homomorphic Encryption

Learning With Errors (LWE) encryption/decryption
o RLWE encryption

Bootstrap
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Cryptography in History

@ 1900-1950: Symmetric Encryption (same key) (Enigma,
Shannon Information theory, ...)
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Cryptography in History

@ 1900-1950: Symmetric Encryption (same key) (Enigma,
Shannon Information theory, ...)

e 1970s: Asymmetric Encryption (encryption with public key,
decryption with private key)

@ Only thing people did with crypted data ... was decrypt it...

e Today (big data era), we want to perform (cloud) computing
on encrypted data, e.g. for machine learning applications

@ Need to be able to perform sums and products on encrypted
data
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Homomorphic Encryption

Let ¢ be an encryption:

¢ : ({plaintext}, +, x) — ({ciphertext}, ®, ®)
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Homomorphic Encryption

Let ¢ be an encryption:

¢ : ({plaintext}, +, x) — ({ciphertext}, ®, ®)

e Homomorphic encryption (HE) preserves either addition or
multiplication of two messages, ie.

p(mi + m2) = p(m) ® p(m2), or
p(m x my) = p(m1) @ p(my).
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Homomorphic Encryption

Let ¢ be an encryption:
@ : ({plaintext},+, x) — ({ciphertext}, ®, ®)
e Homomorphic encryption (HE) preserves either addition or
multiplication of two messages, ie.
o(m1 + mp) = p(m1) ® p(m2), or
p(m x mp) = @(m1) ® p(my).
e Fully homomorphic encryption (FHE) preserves both

addition and multiplication.
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Learning With Errors (LWE) encryption/decryption

e For n,q,t € N* with t|q and a message m € Z; C Z,, the LWE
encryption with the key § < Xkey(Zg) of m is defined as:

LWE, s(m) :=

(3,b) = (4,(3.5) + m+e) € Zg™,

> n »_— 9
where '« Zg, error e « Xerror(Zq) and m = Im.
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Learning With Errors (LWE) encryption/decryption

e For n,q,t € N* with t|q and a message m € Z; C Z,, the LWE
encryption with the key § < Xkey(Zg) of m is defined as:

LWE, s(m) :=

(3,b) = (4,(3.5) + m+e) € Zg™,
where 3'<— Zg, error e < Xerror(Z4) and m = %m.
e The decryption of a ciphertext (a4, b) of m is

LWE(&.b) =T (b~ (3.9))] € Zy

4/21



Learning With Errors (LWE) encryption/decryption

o Let Ermwe((3,b), m) = (b—(4.5)) —m= e If
\se] €[0,1/2] then LWE=X(3,b) = m — Successful decryption.
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Learning With Errors (LWE) encryption/decryption

(b—(a,s)) — m—fe If

o Let Ernwe((4, b), m) =
Y@ p)=m— Successful decryption.

|te| € [0,1/2] then LWE~
On the other hand we have,

LWE, «(my) + LWE, 5(m,)
= (a1, bl) (a2, bp) = (a1 + a2, b1 + bo)
= (a1 + &, (31 + 3, 5) + (i1 + rfi2) + (€1 + €2))
——

sum noise

= LWEq,g(ml + mz).
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Learning With Errors (LWE) encryption/decryption

(b—(a,s)) — m—fe If

o Let Ernwe((4, b), m) =
Y@ p)=m— Successful decryption.

|te| € [0,1/2] then LWE~
On the other hand we have,

LWE, «(my) + LWE, 5(m,)
= (a1, b1) + (a2, b2) = (a1 + a2, b1 + b)

= (81 + &, (a1 + a2, 5) + (i1 + i) + (e1 + €2))
W
sum noise

= LWEq,g(ml + mz).

o WE encryption is homomorphic at the cost of accumulated
noise which can be reduced with bootstrapping.
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RLWE encryption: work with polynomials

e For N, Q,t € N* with t|g and a message m(X) € Rg =R/QR
with R = Z[X]/ (XN + 1), the RLWE encryption with the key
z(X) < Xkey(R@) of m € R; is defined as:

RLWEq ,(m) := (a,b) = (a,a -z + i + e) € R%,

where a < R, error € < Xerror(R@) and m = %m. RLWE
encryption is linearly homomorphic.
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Multiplicative RLWE encryption

To multiply by arbitrary ring elements, we introduce the
encryption scheme

RLWEL(m) = RLWE,(m, RLWE,(Bm), ..., RLWE,(B*1m)).
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Multiplicative RLWE encryption

To multiply by arbitrary ring elements, we introduce the
encryption scheme

RLWE.(m) = RLWE,(m, RLWE,(Bm), ..., RLWE,(B*1m)).
Finally, we define the encryption scheme
RGSW,(m) = (RLWEL(—z - m), RLWE,(m)).
We have the multiplication operation

o RLWE x RGSW — RLWE

For two messages mg, m; € Rg with my small, we have:

RLWE,(mg) o RGSW,(my) = RLWE,(myq - my)
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Numerical implementation

e Implement functions RLWE, RLWE™!, RGSW, ¢

e Need to work on Ry = Z4[X]/(X" + 1), implement product and
tensor product of matrices of polynomials (links with FFT).

e Test code/decode functions on Nexp = 100 independent runs and
test the evolution of the succes rate recovery with different
parameters N € {29,210} and g € {2*%;25;25;27;28} and

o € [0;10], to see the effect of noise
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Experiments code/decode RLWE, N € {2° 2%}, and

c=05:5
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Experiments Sum RLWE, N € {2°21%} and 0 = 0.5 : 10

Succes rate

Aok kA ak Aokl

Sigma

N=210

Succes rate

[

Sigma
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Experiments Prod RLWE, N € {2° 29} and o = 0.01 :

Succes rate

Succes rate

0.05 0.10 0.15 0.20
Sigma

N=210

0.05 0.10 0.15 0.20 0.25 0.30
Sigma
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Hint of Bootstrap: Trick of working in Zg[X]/ (X" + 1)

For a polynomial w(X) = Z,N:_Ol w;X" and any u € Z,, we have

coeffy(X " w(X)) = coeff,(w(X)) = w,
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For a polynomial w(X) = Z,N:_Ol w;X" and any u € Z,, we have
coeffy(X™“w(X)) = coeffy,(w(X)) = w,

Recall that b — (3, 5) = M + e so that with u = b — (&, 5)
coeffy(X~b=EN w (X)) = wspe = wa

as soon as w(X) is well-chosen with coefficients equal on subsets.
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Hint of Bootstrap: Trick of working in Zg[X]/ (X" + 1)

For a polynomial w(X) = Z,N:_Ol w;X" and any u € Z,, we have

coeffp( X~ w(X)) = coeff,(w(X)) = w,
Recall that b — (3, 5) = M + e so that with u = b — (&, 5)
coeffy( X~ =@ w (X)) = waie = wi

as soon as w(X) is well-chosen with coefficients equal on subsets.
GOAL: write this formula with ciphertext — bootstrap scheme

e Of course you cannot reveal the secret key s... but you can
publicly reveal an encrpyption Ency(s) of it !

e Bootstrap = Use Encryption(key,) + tricks with polynomials
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Bootstrap

This is the bootstrap for noise reduction in LWE encryption.

Bootstrap

(LW Es(m), €) = ((d@,b), ) "% RLW E, (x,(X &% . (X))

e <e key switching

extraction

(LW Ez(m),e') = (@', 1), €') < RLW Eq(xy(X "3 . ap(X))

Figure: Bootstrapping steps
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Bootstrap Procedure

INPUT: Cipher LWE;(m) = (a, b) with error e
e Step 1: Blind rotation

(3,b) = LWE,(m) —
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Bootstrap Procedure

INPUT: Cipher LWE;(m) = (a, b) with error e
e Step 1: Blind rotation

(3, b) = LWE,(m) — (a;(X), bz(X)) = RLWE,(x)(X *T9).w(X))
e Step 2: Key switching

(a2(X), b2(X)) = (as(X), bs(X)) = RLWE(x)(X~*H13) - w(X))
e Step 3: Extraction

(as(X), bs(X)) —
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Bootstrap Procedure

INPUT: Cipher LWE;(m) = (a, b) with error e
e Step 1: Blind rotation

(&, b) = LWE;(m) = (az(X), b2(X)) = RLWE,(x)(X " w(X))
e Step 2: Key switching
(a2(X), b2(X)) = (as(X), bs(X)) = RLWE(x)(X~*T 3%  w(X))
e Step 3: Extraction

(as(X), bs(X)) = (3, b) = LWE(m)

OUTPUT: Cipher LWE,(m) = (3, b) with error &’ < e
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Step 1: Blind rotation

(3, b) = LWEL(m) = (a:(X), bz(X)) = RLWE, (x)(X~** 39w (X))
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Step 1: Blind rotation

(3, b) = LWEL(m) = (a:(X), bz(X)) = RLWE, (x)(X~** 39w (X))

w(X) Xwix)
0
p

Figure: Blind Rotation X"w(X)

e u=—b+(35).
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Step 1: Blind rotation

(3, b) = LWEL(m) = (a:(X), bz(X)) = RLWE, (x)(X~** 39w (X))

w(X) Xw(X)
0
p

Figure: Blind Rotation X"w(X)

cu=—b+(as).
e Since (3,5) = 3, ajs;, X'¥% =], X%,

RLWE, (X ~PH(&%) w) = RLWE, (X ~bw)
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(3, b) = LWEL(m) = (a:(X), bz(X)) = RLWE, (x)(X~** 39w (X))

w(X) Xw(X)
0
p

Figure: Blind Rotation X"w(X)

cu=—b+(as).
e Since (3,5) = 3, ajs;, X'¥% =], X%,
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Step 1: Blind rotation

(3, b) = LWEL(m) = (a:(X), bz(X)) = RLWE, (x)(X~** 39w (X))

w(X) Xwix)
0
p

Figure: Blind Rotation X"w(X)

cu=—b+(as).
e Since (3,5) = 3, ajs;, X'¥% =], X%,

RLWE, (X ~PH{&%) w) = RLWE,(X ~bw) 0 RGSW,(X%%) ... 6 RGSW,(X3—1%5-1)

e The Bootstrap Keys are publicly available

BK;j = RGSW,(X’), 0<i<n, 0<j<gq

15/21



Step 1: Blind rotation with further decompostion

e The Bootstrap Keys are publicly available

BKi,j = RGSWZ(XjSi)’ O<i=n 0=<j<gq
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Step 1: Blind rotation with further decompostion

e The Bootstrap Keys are publicly available
BK:; = RGSW,(X*), 0<i<n, 0<j<gq

o X(33) — HiXafS; = Hi,j Xai,ijsf with a; = Zj ai,ij
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Step 1: Blind rotation with further decompostion

e The Bootstrap Keys are publicly available
BK:; = RGSW,(X*), 0<i<n, 0<j<gq

o X(33) — HiXafS; = Hi,j Xai,ijsf with a; = Zj ai,ij

BK; j = RGSW,(X'B™*), 0<i<n, 0<j<logg(q),0</<B.
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Bootstrap Procedure

e Step 2: Key switching

(a:(X), b2(X)) = (a5(X), bs(X)) = RLWE,(x) (X P73 - w(X)
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Step 2: Key switching

Key switching operation converts a ciphertext RLWE,,(m) of a
message m € R encrypted by a secret key z; € Rg to a
ciphertext RLWE,,(m) encrypted by a new secret key z; € Ry.

Algorithm 1: Key Switching in RLWE

Inputs : (a,b) = RLWE,,(m), 2,
Outputs: (a’,b’) = RLWE,,(m)

1 Compute RLWEZz(Bj -z1) =: (KS}, KS}’) for
j=0,- K =logg Q-1

2 Write a = Z —o B’ where o) = SV Vol aij X' such that
|aij| < B — 1

3 Return (a’,b’) = ( — ZJ 10 KSP,b — ZJ 10 KSb)
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Bootstrap Procedure

e Step 3: Extraction
(as(X), bs(X)) — (. b) = LWEs(m)

OUTPUT: Cipher LWE,(m) = (&, b) with error &’ < e
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Step 3: Extraction

Let RLWE(xy(m(X)) = (a(X), b(X)) € Rq. We have

b(X) = a(X) - s(X) + m(X) + e(X)
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Step 3: Extraction

Let RLWE(xy(m(X)) = (a(X), b(X)) € Rq. We have

b(X) = a(X) - s(X) + m(X) + e(X)

At the ith coefficient we have:

N-1
bi= ai_sk+mi+e;
k=0
= (1i(a),s) + m;i + &

where ¢;(a) is the i*" anti-cyclic permutation of coefficients of a.
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Step 3: Extraction

Let RLWE(xy(m(X)) = (a(X), b(X)) € Rq. We have

b(X) = a(X) - s(X) + m(X) + e(X)

At the ith coefficient we have:
N—1
b; = Z ai_kSk + mj + €
k=0
= (L;(a),s> + m; + g

where ¢;(a) is the i*" anti-cyclic permutation of coefficients of a.
Since e(X) is small, so is €;, thus (v;(a), b;) is a LWEs encryption
of m.
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Conclusion and Bootstrap Today

g

Figure: Craig Gentry (father of Bootstrap !)

e 2009: Craig Gentry Phd dissertation on Bootstrap for FHE

21/21



Conclusion and Bootstrap Today

g

Figure: Craig Gentry (father of Bootstrap !)

e 2009: Craig Gentry Phd dissertation on Bootstrap for FHE

e 2014: Léo Ducas and Daniele Micciancio "Bootstrapping
Homomorphic Encryption in less than a second”

e 2017: Chilloti et al. obtained speed up from less than 1 s to less
than 0.1 s + reduce the 1 GB bootstrapping key size to 24 MB,
preserving the same security levels.

e New perspectives: parallel and distributed computing, bootstrap

on GPU’s (2021), faster and faster ... FHE is active field of

research! 21/21



