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Background and Motivation

Underlying integration problem

Let f : Rd → R+ be a target density function and g : Rd → R integrable.
• Goal: Estimate

α =

∫
Rd

g(x)f (x) dx = Ef [g ]

• Constraints:
Only based on evaluations g(X1), . . . , g(Xn) where X1, . . . ,Xn are called
particles; g may be black-box and sampling from f may be hard1.

• Central question: Accuracy given number of particles
Numerically calculate an integral using importance sampling and reduce
the variance by including control variates.

1In Bayesian statistics, f is the density a posteriori.
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Background and Motivation: Monte Carlo integration

GOAL: Compute the integral

α = Ef [g ] =

∫
Rd

g(x)f (x) dx

Can we sample from target distribution f ?

• YES, then use naive Monte Carlo estimate (later on control variates)

I
(mc)
n (g) =

1
n

n∑
i=1

g(Xi ), X1, . . . ,Xn ∼ f

Books: Robert and Casella (1999); Evans and Swartz (2000); Glasserman
(2004); Owen (2013)
• NO, then use importance sampling with sampling policy q

I (is)
norm(g) =

∑n
i=1 wig(Xi )∑n

i=1 wi
, X1, . . . ,Xn ∼ q,

where the sequence (wi )i=1,...,n of importance weights is defined by

wi = f (Xi )/q(Xi ).
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Generalization: Adaptive Importance Sampling (AIS)

GOAL:
α = Ef [g ] =

∫
Rd

g(x)f (x) dx

Sampling policy (qt)t≥0 =
densities which evolve adap-
tively depending on previous
outcomes with qt → f when
t →∞.

f(x)
q1(x)

f(x)
q2(x)

f(x)
qT(x)

Figure: Evolution of sampling policy is AIS.

• At time t, draw nt particles Xt,1, . . . ,Xt,nt ∼ qt−1 with importance
weights wt,i = f (Xt,i )/qt−1(Xt,i ) and allocation policy (nt)t≥0.

• The normalized AIS estimate (Delyon and Portier, 2018) of α is given by

I (ais)
norm(g) =

∑T
t=1
∑nt

i=1 wt,ig(Xt,i )∑T
t=1
∑nt

i=1 wt,i

.
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Monte Carlo jungle: (adaptive) importance sampling

Sequential simulation = leading approach to compute integrals

• Early works on sequential schemes include (Geweke, 1989; Kloek and
Van Dijk, 1978; Oh and Berger, 1992) where the sampling policy (qt)t≥0 is
chosen out of a parametric family.

• Extension of the parametric approach by the Population Monte Carlo
framework (Cappé et al., 2008, 2004; Martino et al., 2017).

• Various asymptotic results in (Chopin, 2004; Douc and Moulines, 2008;
Portier and Delyon, 2018).

• non-parametric importance sampling in (Dai et al., 2016; Delyon and
Portier, 2021; Korba and Portier, 2022; Zhang, 1996)
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Monte Carlo jungle: Control variates

Let X1, . . . ,Xn ∼ f , naive Monte Carlo estimator is

I
(mc)
n (g) =

1
n

n∑
i=1

g(Xi )

• Unbiased, consistent, variance σ2(g)/n where σ2(g) = Ef [(g −Ef [g ]))2].

increasing n is prohibitive, how to reduce the variance ?

Control variates technique
Use the knowledge of functions h1, . . . , hm with known integrals Ef [hj ].

• Benefits can be established theoretically in terms of:
error bounds (Oates et al., 2017); weak convergence (Portier and Segers,
2019); excess risk (Belomestny et al., 2022); uniform error bounds over
classes of integrands (Plassier et al., 2020).

The existing control variate methods do not account for sequential changes
in the particle distribution as is the case in AIS !
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Goal and Contributions

GOAL: numerically calculate an integral using importance sampling and
reduce the variance by including control variates.

Contributions:

(1) A simple weighted least squares approach is proposed to improve the
procedure of sequential algorithms with control variates.

(2) The proposed approach significantly improves the accuracy of the initial
algorithm, both theoretically and in practice.

(3) It takes the form of a quadrature rule with adapted quadrature weights
that do not depend on the integrand and reflect the information brought
in by the control variates.

(4) Non-asymptotic bound on the probabilistic error of the procedure.
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Control Variates: variance reduction with samples from f

GOAL:
α = Ef [g ] =

∫
Rd

g(x)f (x) dx

• Control variates are functions h1, . . . , hm ∈ L2(f ) with known integrals.
Let h = (h1, . . . , hm)>, assume that Ef [hj ] = 0 for all j = 1, . . . ,m.
(Stein control variates, Orthogonal Polynomial families)

• For any β ∈ Rm,

we have Ef [g − β>h] = Ef [g ] leading to the CV estimate of α,
parameterized by β

I
(cv)
n (g , β) =

1
n

n∑
i=1

[g(Xi )− β>h(Xi )], X1, . . . ,Xn ∼ f .

• What optimal choice for β? ? Look at variance and define

β∗ = arg min
β∈Rm

Ef

[
(g − Ef [g ]− β>h)2]
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Control Variates and Least-Squares

• Provided matrix G = Ef [hh>] is invertible, there is a unique β∗ ∈ Rm for
which the variance of I (cv)

n (g) is minimal: β∗ =
(
Ef [hh>]

)−1 Ef [hg ].
• Casting the problem in an Ordinary Least Squares framework leads to
the control variate estimate

I
(cv)
n (g) = I

(cv)
n

(
g , β̂

(cv)
n

)
= α̂

(cv)
n where X1, . . . ,Xn ∼ f ,(

α̂
(cv)
n , β̂

(cv)
n

)
∈ arg min

(a,b)∈R×Rm

1
n

n∑
i=1

{g(Xi )− a− b>h(Xi )}2

Figure: L2 projection of g onto space of control variates Span{h1, . . . , hm}.
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Adaptive Importance Sampling with Control Variates

• AISCV estimate is the first coordinate of the solution to the Weighted
Least Squares problem: Xi ∼ qi−1

(α̂n, β̂n) = arg min
a∈R,b∈Rm

n∑
i=1

wi

[
g(Xi )− a− b>h(Xi )

]2
,wi = f (Xi )/qi−1(Xi ).

• (a) (Exact integration) whenever g is of the form α+β>h for some α ∈ R
and β ∈ Rm, the error is zero, i.e., α̂n = α =

∫
gf dλ.

• (b) (Quadrature Rule) the estimate takes the form of a quadrature rule
α̂n =

∑n
i=1 vn,ig(Xi ), for quadrature weights vn,i that do not depend

on the function g and that can be computed by a single weighted least
squares procedure.
• (c) (Bayesian) it can be computed even when f is known only up to a
multiplicative constant.
• (d) (post-hoc scheme) CV can be brought into play in a post-hoc scheme,
after generation of the particles and importance weights, and this for any
AIS algorithm
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AISCV algorithm

Require: g , f , T ∈ N∗, (nt)
T
t=1, initial density q0, update rule for qi

1: for t = 1, . . . ,T do
2: Generate an independent random sample Xt,1, . . . ,Xt,nt from qt−1
3: Compute weights (wt,i )

nt
i=1 where wt,i = f (Xt,i )/qt−1(Xt,i )

4: Construct the matrix of control variates Ht =
(
hj(Xt,i )

)j=1,...,m
i=1,...,nt

5: Evaluate the integrand in the particles: (g(Xt,i ))nti=1
6: Update qt based on the past (Xs,i : s = 1, . . . , t; i = 1, . . . , ns)
7: end for
8: (α̂T , β̂T ) = arg min

(a,b)∈R×Rm

{∑T
t=1
∑nt

i=1 wt,i

(
g(Xt,i )− a− b>h(Xt,i )

)2}
9: I

(aiscv)
n (g) = α̂T .
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Concentration inequality for the AISCV estimate

Assumptions

(A1): ∃c ≥ 1 : ∀x ∈ Rd , f (x) ≤ c · qi (x).
(A2): sup

x :f (x)>0
|hj(x)| <∞ and G = Ef [hh>] invertible.

(A3): ∃τ > 0 : ∀t > 0, i ≥ 1, P[|wiε(Xi )| > tFi−1] ≤ 2 exp(−t2/(2τ2))

Theorem
Under A1, A2, A3, for any δ ∈ (0, 1) and for all n ≥ C1c

2B log(10m/δ), we
have, with probability at least 1− δ, that∣∣∣∣I (aiscv)

norm (g)−
∫
Rd

g(x)f (x) dx
∣∣∣∣ ≤ C2τ

√
log(10/δ)

n
+ C3cBτ

log(10m/δ)

n
,

C1, C2, C2 are constants, B = sup
x :f (x)>0

‖~(x)‖22 with ~ = G−1/2h.
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Control Variates in Practice and Bayesian Inference

• Stein control variates (Oates et al., 2017) are built with operator L
(Stein, 1972; Gorham and Mackey, 2015) on functions ϕ ∈ C2(Rd ,R) to
have Ef [Lϕ] = 0.

(Lϕ)(x) = ∆xϕ(x) +∇xϕ(x)>∇x log f (x).

• ∇x log f (x) can either be directly computed (Bayesian regression) or with
autodiff in Tensorflow and PyTorch. (Abadi et al., 2016; Paszke et al.,
2017)

• Given data D and parameter of interest θ ∈ Rd , posterior integrals take
the form

∫
Rd g(θ)p(θ|D) dθ, where p(θ|D) ∝ `(D|θ)π(θ) is the posterior

distribution, proportional to prior π(·) and a likelihood `(D|·).
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Synthetic examples: Gaussian Mixtures

Integrand and Target: g(x) = x , fΣ(x) = 0.5ΦΣ(x − µ) + 0.5ΦΣ(x + µ)
where µ = (1, . . . , 1)>/2

√
d ,Σ = Id/d and ΦΣ is pdf N (0,Σ).

Sampling policy: Multivariate Student
Control variates: Stein method with ϕ = polynomial with bounded degree
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Figure: Gaussian mixture density: Logarithm of ‖Î (g)− I (g)‖22 for g(x) = x with target
isotropic fΣ with d = 4 (left), d = 8 (right).
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Bayesian Linear Regression on Real-world data

Data (Dua and Graff, 2019): housing (N = 506; d = 13;m ∈ {12; 104});
abalone (N = 4177; d = 8;m ∈ {7; 44}).
Prior: π(θ) ∼ N (µa,Σa), Posterior: p(θ|D) ∝ `(D|θ)π(θ).
Integrand: g(θ) =

∑d
i=1 θ

2
i .

Control variates: Stein control variates with ϕα(θ) = θα1
1 · · · θ

αd
d ,

α1 + · · ·+ αd ≤ Q, Q ∈ {1; 2}.
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Figure: BLR: boxplots of (Î (g)− I (g))/I (g) for g(θ) =
∑d

j=1 θ
2
j with datasets Housing

(left) and Abalone (right).
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Conclusion and take-home message

• This paper provides a new method to incorporate control variates within
standard sequential algorithms.

• The proposed approach significantly improves the accuracy of the initial
algorithm, both theoretically and in practice.

• Control Variates can be brought into play in a post-hoc scheme, after
generation of the particles and importance weights, and this for any AIS
algorithm

Thank you !
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