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Introduction

We consider the following type of optimization problem:

min
θ∈Rp

f (θ)

• ∇f hard to compute (large-scale problems) or even intractable !
• (ERM example) data z1, . . . , zn ⊂ Z and a differentiable loss function
` : Rp ×Z → R, the objective function f is the so-called empirical risk

∀θ ∈ Rp, f (θ) =
1
n

n∑
i=1

`(θ, zi ).

• The true gradient is given by ∇f (θ) = n−1∑n
i=1∇`(θ, zi ) and requires

to see all the samples in the dataset !
• The gradient estimates at θt are given by

g(θt , ξt+1) = ∇θ`(θt , zj)

where j = ξt+1 ∼ U(J1, nK) is uniformly distributed.
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Introduction

We consider the following type of optimization problem:

min
θ∈Rp

f (θ)

• (Zeroth-Order) Finite differences estimate g(θ)

∀k ∈ J1, pK,
f (θ + hek)− f (θ)

h
≈

h→0
∂k f (θ)

The (full) deterministic gradient estimate

g(θ) =

p∑
k=1

f (θ + hek)− f (θ)

h
ek ≈

h→0
∇f (θ)

• (1st order Stochastic) Unbiased estimate g(·, ξ) s.t.
Eξ[g(θ, ξ)] = ∇f (θ)

• (SGD): Stochastic Gradient Descent

θt+1 = θt − γt+1g(θt , ξt+1)
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Introduction: Bridging the gap

We consider the following type of optimization problem:

min
θ∈Rp

f (θ)

• (SGD): Stochastic Gradient Descent

θt+1 = θt − γt+1g(θt , ξt+1)

• (SCGD): Stochastic Coordinate Gradient Descent{
θ
(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g(θt , ξt+1)

(k) if k = ζt+1

ζt+1 is a random variable valued in J1, pK.
• Covers many approaches : generate gradient estimate g and coordinate
ζt+1.
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Contributions

{
θ
(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g(θt , ξt+1)

(k) if k = ζt+1

(SCGD) θt+1 = θt − γt+1D(ζt+1)g(θt , ξt+1)

with D(k) = eke
T
k = Diag(0, . . . , 0, 1, 0, . . . , 0).

• How to update the selecting matrix D(ζt+1) ?
→ We develop an algorithm MUSKETEER to leverage the data
structure and move along relevant directions.

• What condition on ζt+1 for convergence ? → We analyze the
properties of SCGD algorithms (convergence of the iterates,
convergence of the policy, non-asymptotic bounds)
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Related work

• CD with true gradient ∇f (Loshchilov et al., 2011; Richtárik and
Takáč, 2013; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016;
Allen-Zhu et al., 2016; Namkoong et al., 2017)

• Nutini et al. (2015) → Gauss-Southwell rule with ∇f , here we have
stochastic g and ζt+1.
• Sparsification methods (Alistarh et al., 2017; Wangni et al., 2018),
unbiased estimate of the gradient and no theoretical results →
MUSKETEER performs no reweighting (biased) and theoretical results
(convergence).
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General framework and notation

• Denote by g t = g(θt , ξt+1), only one coordinate is selected at random
according to ζt+1 valued in J1, pK

{
θ
(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

• The distribution of ζt+1, noted ζt+1 ∼ Q(dt) is the coordinate
sampling policy and is characterized by the probability weights vector
dt = (d

(1)
t , . . . , d

(p)
t )

d
(k)
t = P(ζt+1 = k|Ft), k ∈ J1, pK.

• The distribution of the random matrix D(ζt+1) is fully characterized by
the matrix

Dt = E[D(ζt+1)|Ft ] = Diag(d
(1)
t , . . . , d

(p)
t ).
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General view: Unbiased and Adaptive policies

General update rule

θt+1 = θt − γt+1h(θt , ωt+1)

where h is a gradient generator and (ωt)t≥1 is a sequence of random
variables, ωt = (ξt , ζt) for SCGD.

• (SGD) h(θ, ωt+1) = g(θ, ξt+1)

• (SCGD) h(θ, ωt+1) = D(ζt+1)g(θ, ξt+1)

• (Unbiased) h(θ, ωt+1) = D−1
t D(ζt+1)g(θ, ξt+1) (Wangni et al., 2018)
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MUSKETEER

MUltivariate
Stochastic
Knowledge
Extraction
Through
Exploration
Exploitation
Reinforcement
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Illustration/Motivation
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MUSKETEER

MUSKETEER may be seen as an adaptive bandit problem with
’arms=coordinates’ to draw. It alternates between 2 phases:

• Exploration phase (one for all).
→ fixed dn, draw random coordinate and move along selected direction
→ cumulative gains for the visited coordinates
• Exploitation phase. (all for one)
→ share knowledge of the cumulative gains
→ update the coordinate sampling probability vector dn (EXP3)
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MUSKETEER: Exploration phase

Consider a fixed iteration n ∈ N of MUSKETEER’s main loop.

• The exploration phase may be seen as a multi-armed bandit problem
where the arms are the gradient coordinates for k ∈ J1, pK.
• For t ∈ J1,T K, ζ ∼ Q(dn) and the relative gradient g (ζ)

t /d
(ζ)
n ,

representing the reward, is observed.
→ 1) Update the iterate θ(ζ)t+1 = θ

(ζ)
t − γt+1g

(ζ)
t

→ 2) Build cumulative gains

G̃
(ζ)
t+1 = G̃

(ζ)
t + g (ζ)(θt , ξ)/d

(ζ)
n

→ (Variants with abs or square) |g (ζ)(θt , ξ)| or g (ζ)(θt , ξ)
2

→ Value of T ? RL trade-off
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• For t ∈ J1,T K, ζ ∼ Q(dn) and the relative gradient g (ζ)

t /d
(ζ)
n ,

representing the reward, is observed.
→ 1) Update the iterate θ(ζ)t+1 = θ

(ζ)
t − γt+1g

(ζ)
t

→ 2) Build cumulative gains

G̃
(ζ)
t+1 = G̃

(ζ)
t + g (ζ)(θt , ξ)/d

(ζ)
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MUSKETEER: Exploitation phase

• Starting from G0 = (0, . . . , 0), the total gain Gn is updated in a online
manner during the exploitation phase using the update rule

Gn+1 = Gn + G̃T , G̃T =
T∑
t=1

D−1
n D(ζt+1)g(θt , ξt+1). (1)

• EXP3 algorithm (Auer et al., 2002) to update the probability weights
through a mixture. Given η > 0 and λ ∈ [0, 1], we have for all k ∈ J1, pK,

d
(k)
n+1 = (1− λ) exp(ηG

(k)
n /(nT ))∑d

j=1 exp(ηG
(j)
n /(nT ))

+ λ
1
p
· (2)
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MUSKETEER: Exploration/Exploitation phases

Explore(T , dn)

1: for t = 1, . . . ,T do
2: Sample coordinate ζ ∼ Q(dn) and data ξ
3: Update iterate: θ(ζ)t+1 = θ

(ζ)
t − γt+1g

(ζ)(θt , ξ)

4: Update gain: G̃ (ζ)
t+1 = G̃

(ζ)
t + g (ζ)(θt , ξ)/d

(ζ)
n

5: end for
6: Return vector of gains G̃T

Exploit(Gn, G̃T , λ, η)

1: Update total gain Gn using (1)
2: Update probability weights dn+1 using (2)
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Numerical Experiments



Numerical Experiments

• We apply ERM to regularized regression and classification problems.

• Given a data matrix X = (xi,j) ∈ Rn×p with labels y ∈ Rn and a
regularization parameter µ > 0, the Ridge regression is

min
θ∈Rp

f (θ) =
1
2n

n∑
i=1

(yi −
p∑

j=1

xi,jθj)
2 +

µ

2
‖θ‖22

and the `2-regularized logistic regression is defined by

min
θ∈Rp

f (θ) =
1
n

n∑
i=1

log(1+ exp(−yi
p∑

j=1

xi,jθj)) + µ‖θ‖22

where µ is set to the classical value µ = 1/n.
• The columns are drawn as X [:, k] ∼ N (0, σ2

k In) with σ
2
k = k−α for

k ∈ J1, pK.
• Setting γt = 1/t, n = 10, 000, p = 250, T = b√pc = 15.
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Zero-Order Ridge Regression α = 2, 5, 7, 10
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Numerical Experiments: Ridge Regression

• α = 5 and α = 10
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Numerical Experiments: Logistic Regression

• α = 2 and α = 5
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Numerical Experiments

• MNIST, Fashion-MNIST, CIFAR10
• linear layers for MNIST and Fashion-MNIST (p = 55, 050 and
T = 234), convolutional layers for CIFAR10 (p = 64, 862 and T = 254).
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Numerical Experiments

• MNIST and Fashion-MNIST (ZO) (p = 55, 050 and T = 234)
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Numerical Experiments

• MNIST and Fashion-MNIST (ZO) (p = 55, 050 and T = 234)

0 75 150 225 300 375
#Queries of Loss f (x1e3)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Tr
ai

ni
ng

 L
os

s

uniform
nesterov
mus_sqr
mus_abs
mus_avg

0 75 150 225 300 375
#Queries of Loss f (x1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

uniform
nesterov
mus_avg
mus_sqr
mus_abs

0 75 150 225 300 375
#Queries of Loss f (x1e3)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Tr
ai

ni
ng

 L
os

s

uniform
nesterov
mus_sqr
mus_abs
mus_avg

0 75 150 225 300 375
#Queries of Loss f (x1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

uniform
nesterov
mus_avg
mus_sqr
mus_abs

21



Numerical Experiments

• MNIST and Fashion-MNIST (ZO) (p = 55, 050 and T = 234)

0 75 150 225 300 375
#Queries of Loss f (x1e3)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Tr
ai

ni
ng

 L
os

s

uniform
nesterov
mus_sqr
mus_abs
mus_avg

0 75 150 225 300 375
#Queries of Loss f (x1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

uniform
nesterov
mus_avg
mus_sqr
mus_abs

0 75 150 225 300 375
#Queries of Loss f (x1e3)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Tr
ai

ni
ng

 L
os

s

uniform
nesterov
mus_sqr
mus_abs
mus_avg

0 75 150 225 300 375
#Queries of Loss f (x1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

uniform
nesterov
mus_avg
mus_sqr
mus_abs

21



Main results



Main results

min
θ∈Rp
{f (θ) = Eξ[f (θ, ξ)]}

• The gradient generator is gh(·, ξ) where h ≥ 0 is the underlying bias.

Biased Gradient
There exists constant c ≥ 0 such that

∀h > 0, θ ∈ Rp, ‖Eξ[gh(θ, ξ)]−∇f (θ)‖ ≤ ch.

• c = 0 recovers 1st-order gradient estimates.
• This assumption covers general zeroth-order estimates.
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ZO gradient estimates

min
θ∈Rp
{f (θ) = Eξ[f (θ, ξ)]}

Example 1 (smoothing). (Nesterov and Spokoiny, 2017). The
smoothed gradient estimate is given by

∀θ ∈ Rp, gh(θ, ξ) = h−1[f (θ + hU, ξ)− f (θ, ξ)]U

where U ∼ N (0, I ). (Alternative version with U ∼ Unif (S))
Example 2 (finite differences). The finite differences gradient estimate
is given by

∀θ ∈ Rp, gh(θ, ξ) =

p∑
k=1

gh(θ, ξ)
(k)ek

where for all k = 1, . . . , p the coordinates are

gh(θ, ξ)
(k) = h−1[f (θ + hek , ξ)− f (θ, ξ)]

23
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General form

There exists probability measure ν satisfying
∫
Rp xx

>ν(dx) = Ip,

∀h > 0, θ ∈ Rp, Eξ[gh(θ, ξ)] =

∫
Rp

x

{
f (θ + hx)− f (θ)

h

}
ν(dx).

• Satisfies biased gradient assumption with c =
√
CL/2 where

C =
∫
Rp ‖x‖62ν(dx) <∞.

• The smoothed gradient estimate is recovered when ν is the standard
Gaussian measure.
• Take ν =

∑p
k=1 δek/p covers the finite differences estimate.

• (MUSKETEER) Use a measure ν that evolves through time and put
different weights on the different directions !
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Assumption

• f is L-smooth and lower bounded by f ?.

• (Growth condition) With probability 1, there exist 0 ≤ L, σ2 <∞

∀h > 0, θ ∈ Rp E
[
‖gh(θ, ξ)‖2∞

]
≤ 2L (f (θ)− f ?) + σ2.

Gradient generator g t = ght+1(θt , ξt+1)

(SGD) θt+1 = θt − γt+1g t

Theorem (Almost sure convergence of (biased) SGD)
Let (θt) obtained by SGD and assume that the learning rates satisfy the
Robbins-Monro condition and h2

t = O(γt) then ∇f (θt)→ 0 a.s. when
t →∞.

• When f coercive and unique solution {θ : ∇f (θ) = 0} = {θ?} then
almost sure convergence towards minimizer θt → θ?.
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Main results: particular SCGD

(SGD) θt+1 = θt − γt+1g t

(SCGD) θt+1 = θt − γt+1D(ζt+1)g t

Theorem (Almost sure convergence of particular SCGD)
Let (θt) obtained by SCGD and assume that the learning rates satisfy
the Robbins-Monro condition and h2

t = O(γt):
(i) (max gradient) if ζt+1 = arg maxk=1,...,p |∂k f (θt)| then ∇f (θt)→ 0
almost surely as t → +∞.
(ii) (gradient weights) if Dt ∝ (|∇k f (θt)|q)1≤k≤p with q > 0 then
∇f (θt)→ 0 almost surely as t → +∞.
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Main results: general SCGD

Extended Robbins-Monro

βt+1 = min1≤k≤p d
(k)
t . The sequences (γt)t≥1 and (βt)t≥1 are positive

with
∑

t≥1 γtβt = +∞,∑t≥1 γ
2
t < +∞.

• Note that Dt = Ip recovers SGD with standard Robbins-Monro.

Theorem (Almost sure convergence general SCGD)
Let (θt) obtained by SCGD and assume that the learning rates satisfy
the extended Robbins-Monro condition and h2

t = O(γt). If (βt) is lower
bounded then ∇f (θt)→ 0 almost surely as t → +∞.

• Similarly with stronger assumptions (f coercive, unique critical point),
there is convergence of the iterates towards minimizer θ?.
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Main results: MUSKETEER

Theorem (Almost sure convergence)
The sequence of iterates (θt)t≥0 obtained by the MUSKETEER satisfies
∇f (θt)→ 0 almost surely as t → +∞.

Theorem (Weak convergence)
The MUSKETEER’s coordinate policy (Q(dn))n∈N converges weakly to
the uniform distribution, i.e., Q(dn) U(J1, pK) as n→ +∞.

Theorem (Non-asymptotic bounds, (Moulines and Bach, 2011))

Let (θt)t∈N obtained by MUSKETEER with γt = γt−α then

E [f (θt)− f ?] = O(1/t), (α = 1)
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Future work

• Study the behavior of the rescaled sequence (θt − θ?)/√γt for
MUSKETEER and general SCGD methods.
• Study the asymptotic behavior of other adaptive sampling strategies
• Study the extensions with Nesterov acceleration schemes and
momentum
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Q & A

Thank you
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