SGD with Coordinate Sampling: Theory and Practice

SIERRA Seminar Joint work with François Portier, arXiv 2105.11818 Rémi Leluc July 6, 2022

MUSKETEER

Numerical Experiments

Main results

We consider the following type of optimization problem:

 $\min_{\theta \in \mathbb{R}^p} f(\theta)$

We consider the following type of optimization problem:

$\min_{\theta \in \mathbb{R}^p} f(\theta)$

• ∇f hard to compute (large-scale problems) or even intractable !

We consider the following type of optimization problem:

$\min_{\theta\in\mathbb{R}^p}f(\theta)$

- ∇f hard to compute (large-scale problems) or even intractable !
- (ERM example) data $z_1, \ldots, z_n \subset \mathcal{Z}$ and a differentiable loss function
- $\ell: \mathbb{R}^p \times \mathcal{Z} \to \mathbb{R}$, the objective function f is the so-called empirical risk

$$\forall \theta \in \mathbb{R}^p, \quad f(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, z_i).$$

We consider the following type of optimization problem:

$\min_{\theta\in\mathbb{R}^p}f(\theta)$

- ∇f hard to compute (large-scale problems) or even intractable !
- (ERM example) data $z_1, \ldots, z_n \subset \mathcal{Z}$ and a differentiable loss function
- $\ell: \mathbb{R}^p \times \mathcal{Z} \to \mathbb{R}$, the objective function f is the so-called empirical risk

$$\forall \theta \in \mathbb{R}^p, \quad f(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, z_i).$$

• The true gradient is given by $\nabla f(\theta) = n^{-1} \sum_{i=1}^{n} \nabla \ell(\theta, z_i)$ and requires to see all the samples in the dataset !

We consider the following type of optimization problem:

$\min_{\theta\in\mathbb{R}^p}f(\theta)$

- ∇f hard to compute (large-scale problems) or even intractable !
- (ERM example) data $z_1, \ldots, z_n \subset \mathcal{Z}$ and a differentiable loss function
- $\ell: \mathbb{R}^p \times \mathcal{Z} \to \mathbb{R}$, the objective function f is the so-called empirical risk

$$\forall \theta \in \mathbb{R}^p, \quad f(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, z_i).$$

- The true gradient is given by $\nabla f(\theta) = n^{-1} \sum_{i=1}^{n} \nabla \ell(\theta, z_i)$ and requires to see all the samples in the dataset !
- The gradient estimates at θ_t are given by

$$\mathbf{g}(\theta_t,\xi_{t+1}) = \nabla_{\theta}\ell(\theta_t,z_j)$$

where $j = \xi_{t+1} \sim \mathcal{U}(\llbracket 1, n \rrbracket)$ is uniformly distributed.

We consider the following type of optimization problem:

 $\min_{\theta \in \mathbb{R}^p} f(\theta)$

• (Zeroth-Order) Finite differences estimate $g(\theta)$

We consider the following type of optimization problem:

$\min_{\theta\in\mathbb{R}^p}f(\theta)$

• (Zeroth-Order) Finite differences estimate $g(\theta)$

$$\forall k \in \llbracket 1, p
bracket, \quad rac{f(heta + he_k) - f(heta)}{h} \underset{h o 0}{\approx} \partial_k f(heta)$$

The (full) deterministic gradient estimate

$$g(\theta) = \sum_{k=1}^{p} \frac{f(\theta + he_k) - f(\theta)}{h} e_k \underset{h \to 0}{\approx} \nabla f(\theta)$$

We consider the following type of optimization problem:

$\min_{\theta \in \mathbb{R}^p} f(\theta)$

• (Zeroth-Order) Finite differences estimate $g(\theta)$

$$\forall k \in \llbracket 1, p
bracket, \quad rac{f(heta + he_k) - f(heta)}{h} \underset{h o 0}{\approx} \partial_k f(heta)$$

The (full) deterministic gradient estimate

$$g(heta) = \sum_{k=1}^{p} rac{f(heta + he_k) - f(heta)}{h} e_k \underset{h o 0}{pprox}
abla f(heta)$$

• (1st order Stochastic) Unbiased estimate $g(\cdot,\xi)$ s.t.

 $\mathbb{E}_{\xi}[\mathbf{g}(\theta,\xi)] = \nabla f(\theta)$

We consider the following type of optimization problem:

$\min_{\theta \in \mathbb{R}^p} f(\theta)$

• (Zeroth-Order) Finite differences estimate $g(\theta)$

$$\forall k \in \llbracket 1, p
bracket, \quad \frac{f(\theta + he_k) - f(\theta)}{h} \underset{h \to 0}{\approx} \partial_k f(\theta)$$

The (full) deterministic gradient estimate

$$g(heta) = \sum_{k=1}^{p} rac{f(heta + he_k) - f(heta)}{h} e_k \underset{h o 0}{pprox}
abla f(heta)$$

• (1st order Stochastic) Unbiased estimate $g(\cdot,\xi)$ s.t.

$$\mathbb{E}_{\xi}[\mathbf{g}(\theta,\xi)] = \nabla f(\theta)$$

• (SGD): Stochastic Gradient Descent

$$\theta_{t+1} = \theta_t - \gamma_{t+1} \mathbf{g}(\theta_t, \xi_{t+1})$$

Introduction: Bridging the gap

We consider the following type of optimization problem:

 $\min_{\theta \in \mathbb{R}^p} f(\theta)$

• (SGD): Stochastic Gradient Descent

$$\theta_{t+1} = \theta_t - \gamma_{t+1} \mathbf{g}(\theta_t, \xi_{t+1})$$

We consider the following type of optimization problem:

 $\min_{\theta \in \mathbb{R}^p} f(\theta)$

• (SGD): Stochastic Gradient Descent

$$\theta_{t+1} = \theta_t - \gamma_{t+1} \mathbf{g}(\theta_t, \xi_{t+1})$$

• (SCGD): Stochastic Coordinate Gradient Descent

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g(\theta_t, \xi_{t+1})^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

 ζ_{t+1} is a random variable valued in $\llbracket 1, p \rrbracket$.

We consider the following type of optimization problem:

 $\min_{\theta \in \mathbb{R}^p} f(\theta)$

• (SGD): Stochastic Gradient Descent

$$\theta_{t+1} = \theta_t - \gamma_{t+1} \mathbf{g}(\theta_t, \xi_{t+1})$$

• (SCGD): Stochastic Coordinate Gradient Descent

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_{t}^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_{t}^{(k)} - \gamma_{t+1} g(\theta_{t}, \xi_{t+1})^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

 ζ_{t+1} is a random variable valued in $\llbracket 1, p \rrbracket$.

• Covers many approaches : generate gradient estimate g and coordinate ζ_{t+1} .

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g(\theta_t, \xi_{t+1})^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$
$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g(\theta_t, \xi_{t+1})$$
with $D(k) = e_k e_k^T = Diag(0, \dots, 0, 1, 0, \dots, 0).$

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g(\theta_t, \xi_{t+1})^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$
$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g(\theta_t, \xi_{t+1})$$
with $D(k) = e_k e_k^T = Diag(0, \dots, 0, 1, 0, \dots, 0).$

• How to update the selecting matrix $D(\zeta_{t+1})$?

W

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g(\theta_t, \xi_{t+1})^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$
$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g(\theta_t, \xi_{t+1})$$
$$\text{ith } D(k) = e_k e_k^T = Diag(0, \dots, 0, 1, 0, \dots, 0).$$

How to update the selecting matrix D(ζ_{t+1}) ?
 → We develop an algorithm MUSKETEER to leverage the data structure and move along relevant directions.

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g(\theta_t, \xi_{t+1})^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$
$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g(\theta_t, \xi_{t+1})$$
with $D(k) = e_k e_k^T = Diag(0, \dots, 0, 1, 0, \dots, 0).$

- How to update the selecting matrix D(ζ_{t+1}) ?
 → We develop an algorithm MUSKETEER to leverage the data structure and move along relevant directions.
- What condition on ζ_{t+1} for convergence ? → We analyze the properties of SCGD algorithms (convergence of the iterates, convergence of the policy, non-asymptotic bounds)

• CD with true gradient ∇f (Loshchilov et al., 2011; Richtárik and Takáč, 2013; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017)

- CD with true gradient ∇f (Loshchilov et al., 2011; Richtárik and Takáč, 2013; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017)
- Nutini et al. (2015) \rightarrow **Gauss-Southwell rule** with ∇f , here we have stochastic g and ζ_{t+1} .

- CD with true gradient ∇f (Loshchilov et al., 2011; Richtárik and Takáč, 2013; Glasmachers and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017)
- Nutini et al. (2015) \rightarrow **Gauss-Southwell rule** with ∇f , here we have stochastic g and ζ_{t+1} .
- Sparsification methods (Alistarh et al., 2017; Wangni et al., 2018), unbiased estimate of the gradient and no theoretical results \rightarrow MUSKETEER performs no reweighting (biased) and theoretical results (convergence).

• Denote by $g_t = g(\theta_t, \xi_{t+1})$, only one coordinate is selected at random according to ζ_{t+1} valued in $[\![1, p]\!]$

• Denote by $g_t = g(\theta_t, \xi_{t+1})$, only one coordinate is selected at random according to ζ_{t+1} valued in $[\![1, p]\!]$

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_{t}^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_{t}^{(k)} - \gamma_{t+1} g_{t}^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

• Denote by $g_t = g(\theta_t, \xi_{t+1})$, only one coordinate is selected at random according to ζ_{t+1} valued in $[\![1, p]\!]$

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g_t^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

• The distribution of ζ_{t+1} , noted $\zeta_{t+1} \sim Q(d_t)$ is the **coordinate** sampling policy and is characterized by the probability weights vector $d_t = (d_t^{(1)}, \ldots, d_t^{(p)})$

• Denote by $g_t = g(\theta_t, \xi_{t+1})$, only one coordinate is selected at random according to ζ_{t+1} valued in $[\![1, p]\!]$

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g_t^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

• The distribution of ζ_{t+1} , noted $\zeta_{t+1} \sim Q(d_t)$ is the **coordinate sampling policy** and is characterized by the probability weights vector $d_t = (d_t^{(1)}, \ldots, d_t^{(p)})$

$$d_t^{(k)} = \mathbb{P}(\zeta_{t+1} = k | \mathcal{F}_t), \quad k \in \llbracket 1, p
rbracket$$

• Denote by $g_t = g(\theta_t, \xi_{t+1})$, only one coordinate is selected at random according to ζ_{t+1} valued in $[\![1, p]\!]$

$$\begin{cases} \theta_{t+1}^{(k)} = \theta_t^{(k)} & \text{if } k \neq \zeta_{t+1} \\ \theta_{t+1}^{(k)} = \theta_t^{(k)} - \gamma_{t+1} g_t^{(k)} & \text{if } k = \zeta_{t+1} \end{cases}$$

• The distribution of ζ_{t+1} , noted $\zeta_{t+1} \sim Q(d_t)$ is the **coordinate** sampling policy and is characterized by the probability weights vector $d_t = (d_t^{(1)}, \ldots, d_t^{(p)})$

$$d_t^{(k)} = \mathbb{P}(\zeta_{t+1} = k | \mathcal{F}_t), \quad k \in \llbracket 1, p
bracket.$$

• The distribution of the random matrix $D(\zeta_{t+1})$ is fully characterized by the matrix

$$D_t = \mathbb{E}[D(\zeta_{t+1})|\mathcal{F}_t] = Diag(d_t^{(1)}, \dots, d_t^{(p)}).$$

General update rule

$$\theta_{t+1} = \theta_t - \gamma_{t+1} h(\theta_t, \omega_{t+1})$$

where *h* is a gradient generator and $(\omega_t)_{t\geq 1}$ is a sequence of random variables, $\omega_t = (\xi_t, \zeta_t)$ for SCGD.

General update rule

$$\theta_{t+1} = \theta_t - \gamma_{t+1} h(\theta_t, \omega_{t+1})$$

where *h* is a gradient generator and $(\omega_t)_{t\geq 1}$ is a sequence of random variables, $\omega_t = (\xi_t, \zeta_t)$ for SCGD.

- (SGD) $h(\theta, \omega_{t+1}) = g(\theta, \xi_{t+1})$
- (SCGD) $h(\theta, \omega_{t+1}) = D(\zeta_{t+1})g(\theta, \xi_{t+1})$
- (Unbiased) $h(\theta, \omega_{t+1}) = D_t^{-1} D(\zeta_{t+1}) g(\theta, \xi_{t+1})$ (Wangni et al., 2018)

MUSKETEER

MUSKETEER

MUltivariate Stochastic Knowledge Extraction Through Exploration Exploitation Reinforcement

Illustration/Motivation

• Exploration phase (one for all).

- \rightarrow fixed d_n , draw random coordinate and move along selected direction
- \rightarrow cumulative gains for the visited coordinates

• Exploration phase (one for all).

- \rightarrow fixed d_n , draw random coordinate and move along selected direction
- \rightarrow cumulative gains for the visited coordinates

• Exploration phase (one for all).

- \rightarrow fixed d_n , draw random coordinate and move along selected direction
- \rightarrow cumulative gains for the visited coordinates
- Exploitation phase. (all for one)
MUSKETEER may be seen as an adaptive bandit problem with 'arms=coordinates' to draw. It alternates between 2 phases:

• Exploration phase (one for all).

- \rightarrow fixed d_n , draw random coordinate and move along selected direction
- \rightarrow cumulative gains for the visited coordinates
- Exploitation phase. (all for one)
- \rightarrow share knowledge of the cumulative gains
- \rightarrow update the coordinate sampling probability vector d_n (EXP3)

• The *exploration* phase may be seen as a **multi-armed bandit problem** where the arms are the gradient coordinates for $k \in [\![1, p]\!]$.

- The *exploration* phase may be seen as a **multi-armed bandit problem** where the arms are the gradient coordinates for $k \in [\![1, p]\!]$.
- For $t \in [\![1, T]\!]$, $\zeta \sim Q(d_n)$ and the relative gradient $g_t^{(\zeta)}/d_n^{(\zeta)}$, representing the reward, is observed.

- The *exploration* phase may be seen as a **multi-armed bandit problem** where the arms are the gradient coordinates for $k \in [\![1, p]\!]$.
- For $t \in [\![1, T]\!]$, $\zeta \sim Q(d_n)$ and the relative gradient $g_t^{(\zeta)}/d_n^{(\zeta)}$, representing the reward, is observed.
- ightarrow 1) Update the iterate $heta_{t+1}^{(\zeta)} = heta_t^{(\zeta)} \gamma_{t+1} g_t^{(\zeta)}$

- The *exploration* phase may be seen as a **multi-armed bandit problem** where the arms are the gradient coordinates for $k \in [\![1, p]\!]$.
- For $t \in [\![1, T]\!]$, $\zeta \sim Q(d_n)$ and the relative gradient $g_t^{(\zeta)}/d_n^{(\zeta)}$, representing the reward, is observed.
- \rightarrow 1) Update the iterate $heta_{t+1}^{(\zeta)} = heta_t^{(\zeta)} \gamma_{t+1} g_t^{(\zeta)}$
- \rightarrow 2) Build cumulative gains

$$\widetilde{G}_{t+1}^{(\zeta)} = \widetilde{G}_t^{(\zeta)} + \frac{g^{(\zeta)}(\theta_t, \xi)}{d_n^{(\zeta)}}$$

- The *exploration* phase may be seen as a **multi-armed bandit problem** where the arms are the gradient coordinates for $k \in [\![1, p]\!]$.
- For $t \in [\![1, T]\!]$, $\zeta \sim Q(d_n)$ and the relative gradient $g_t^{(\bar{\zeta})}/d_n^{(\zeta)}$, representing the reward, is observed.
- \rightarrow 1) Update the iterate $heta_{t+1}^{(\zeta)} = heta_t^{(\zeta)} \gamma_{t+1} g_t^{(\zeta)}$
- \rightarrow 2) Build cumulative gains

$$\widetilde{G}_{t+1}^{(\zeta)} = \widetilde{G}_t^{(\zeta)} + \mathbf{g}^{(\zeta)}(\theta_t, \xi) / d_n^{(\zeta)}$$

→ (Variants with abs or square) $|g^{(\zeta)}(\theta_t, \xi)|$ or $g^{(\zeta)}(\theta_t, \xi)^2$ → Value of T ? RL trade-off

$$G_{n+1} = G_n + \widetilde{G}_T, \quad \widetilde{G}_T = \sum_{t=1}^T D_n^{-1} D(\zeta_{t+1}) \mathbf{g}(\theta_t, \xi_{t+1}).$$
(1)

$$G_{n+1} = G_n + \widetilde{G}_T, \quad \widetilde{G}_T = \sum_{t=1}^T D_n^{-1} D(\zeta_{t+1}) \mathbf{g}(\theta_t, \xi_{t+1}).$$
(1)

• EXP3 algorithm (Auer et al., 2002) to update the probability weights through a mixture.

$$G_{n+1} = G_n + \widetilde{G}_T, \quad \widetilde{G}_T = \sum_{t=1}^T D_n^{-1} D(\zeta_{t+1}) g(\theta_t, \xi_{t+1}).$$
(1)

• EXP3 algorithm (Auer et al., 2002) to update the probability weights through a mixture. Given $\eta > 0$ and $\lambda \in [0, 1]$, we have for all $k \in [\![1, p]\!]$,

$$d_{n+1}^{(k)} = (1 - \lambda) \frac{\exp(\eta G_n^{(k)} / (nT))}{\sum_{j=1}^d \exp(\eta G_n^{(j)} / (nT))} + \lambda \frac{1}{p}.$$
 (2)

Explore (T, d_n)

1: for t = 1, ..., T do

- 2: Sample coordinate $\zeta \sim Q(d_n)$ and data ξ
- 3: Update iterate: $\theta_{t+1}^{(\zeta)} = \theta_t^{(\zeta)} \gamma_{t+1} g^{(\zeta)}(\theta_t, \xi)$
- 4: Update gain: $\widetilde{G}_{t+1}^{(\zeta)} = \widetilde{G}_t^{(\zeta)} + g^{(\zeta)}(\theta_t,\xi)/d_n^{(\zeta)}$
- 5: end for
- 6: Return vector of gains $\widetilde{G}_{\mathcal{T}}$

Exploit($G_n, \widetilde{G}_T, \lambda, \eta$)

- 1: Update total gain G_n using (1)
- 2: Update probability weights d_{n+1} using (2)

• We apply ERM to regularized **regression** and **classification** problems.

• We apply ERM to regularized regression and classification problems.

• Given a data matrix $X = (x_{i,j}) \in \mathbb{R}^{n \times p}$ with labels $y \in \mathbb{R}^n$ and a regularization parameter $\mu > 0$, the *Ridge regression* is

$$\min_{\theta \in \mathbb{R}^{p}} f(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \sum_{j=1}^{p} x_{i,j} \theta_{j})^{2} + \frac{\mu}{2} \|\theta\|_{2}^{2}$$

• We apply ERM to regularized regression and classification problems.

• Given a data matrix $X = (x_{i,j}) \in \mathbb{R}^{n \times p}$ with labels $y \in \mathbb{R}^n$ and a regularization parameter $\mu > 0$, the *Ridge regression* is

$$\min_{\theta \in \mathbb{R}^{p}} f(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \sum_{j=1}^{p} x_{i,j} \theta_{j})^{2} + \frac{\mu}{2} \|\theta\|_{2}^{2}$$

and the ℓ_2 -regularized logistic regression is defined by

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \sum_{j=1}^p x_{i,j}\theta_j)) + \mu \|\theta\|_2^2$$

where μ is set to the classical value $\mu = 1/n$.

- The columns are drawn as $X[:,k] \sim \mathcal{N}(0,\sigma_k^2 I_n)$ with $\sigma_k^2 = k^{-\alpha}$ for $k \in [\![1,p]\!]$.
- Setting $\gamma_t = 1/t$, n = 10,000, p = 250, $T = \lfloor \sqrt{p} \rfloor = 15$.

Zero-Order Ridge Regression $\alpha = 2, 5, 7, 10$

Numerical Experiments: Ridge Regression

•
$$\alpha = 5$$
 and $\alpha = 10$

Numerical Experiments: Logistic Regression

•
$$\alpha = 2$$
 and $\alpha = 5$

• MNIST, Fashion-MNIST, CIFAR10

• linear layers for MNIST and Fashion-MNIST (p = 55,050 and

T = 234), convolutional layers for CIFAR10 (p = 64, 862 and T = 254).

• MNIST, Fashion-MNIST, CIFAR10

• linear layers for MNIST and Fashion-MNIST (p = 55,050 and

T = 234), convolutional layers for CIFAR10 (p = 64, 862 and T = 254).

• MNIST and Fashion-MNIST (ZO) (p = 55,050 and T = 234)

• MNIST and Fashion-MNIST (ZO) (p = 55, 050 and T = 234)

• MNIST and Fashion-MNIST (ZO) (p = 55, 050 and T = 234)

Main results

$$\min_{\theta \in \mathbb{R}^p} \left\{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \right\}$$

• The gradient generator is $g_h(\cdot,\xi)$ where $h \ge 0$ is the underlying bias.

 $\min_{\theta \in \mathbb{R}^{p}} \left\{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \right\}$

• The gradient generator is $g_h(\cdot,\xi)$ where $h \ge 0$ is the underlying bias.

Biased Gradient

There exists constant $c \ge 0$ such that

$$\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \|\mathbb{E}_{\xi}[g_{h}(\theta, \xi)] - \nabla f(\theta)\| \leq ch.$$

• c = 0 recovers 1st-order gradient estimates.

 $\min_{\theta \in \mathbb{R}^{p}} \left\{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \right\}$

• The gradient generator is $g_h(\cdot,\xi)$ where $h \ge 0$ is the underlying bias.

```
Biased Gradient
```

There exists constant $c \ge 0$ such that

 $\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \|\mathbb{E}_{\xi}[g_{h}(\theta, \xi)] - \nabla f(\theta)\| \leq ch.$

- c = 0 recovers 1st-order gradient estimates.
- This assumption covers general zeroth-order estimates.

ZO gradient estimates

$$\min_{\theta \in \mathbb{R}^p} \left\{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \right\}$$

 $\min_{\theta \in \mathbb{R}^p} \left\{ f(\theta) = \mathbb{E}_{\xi} [f(\theta, \xi)] \right\}$

Example 1 (smoothing). (Nesterov and Spokoiny, 2017). The smoothed gradient estimate is given by

$$\forall \theta \in \mathbb{R}^{p}, \mathbf{g}_{h}(\theta, \xi) = h^{-1}[f(\theta + hU, \xi) - f(\theta, \xi)]U$$

where $U \sim \mathcal{N}(0, I)$. (Alternative version with $U \sim Unif(\mathbb{S})$)

 $\min_{\theta \in \mathbb{R}^p} \left\{ f(\theta) = \mathbb{E}_{\xi}[f(\theta, \xi)] \right\}$

Example 1 (smoothing). (Nesterov and Spokoiny, 2017). The smoothed gradient estimate is given by

$$\forall \theta \in \mathbb{R}^{p}, \mathbf{g}_{h}(\theta, \xi) = h^{-1}[f(\theta + hU, \xi) - f(\theta, \xi)]U$$

where $U \sim \mathcal{N}(0, I)$. (Alternative version with $U \sim Unif(\mathbb{S})$) **Example 2 (finite differences).** The finite differences gradient estimate is given by

$$\forall \theta \in \mathbb{R}^{p}, \boldsymbol{g}_{h}(\theta, \xi) = \sum_{k=1}^{p} \boldsymbol{g}_{h}(\theta, \xi)^{(k)} \boldsymbol{e}_{k}$$

where for all $k = 1, \ldots, p$ the coordinates are

$$g_h(\theta,\xi)^{(k)} = h^{-1}[f(\theta + he_k,\xi) - f(\theta,\xi)]$$

$$\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \mathbb{E}_{\xi}[g_{h}(\theta, \xi)] = \int_{\mathbb{R}^{p}} x \left\{ \frac{f(\theta + hx) - f(\theta)}{h} \right\} \nu(\mathrm{d}x).$$

$$\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \mathbb{E}_{\xi}[g_{h}(\theta, \xi)] = \int_{\mathbb{R}^{p}} x \left\{ \frac{f(\theta + hx) - f(\theta)}{h} \right\} \nu(\mathrm{d}x).$$

• Satisfies biased gradient assumption with $c = \sqrt{C}L/2$ where $C = \int_{\mathbb{R}^p} ||x||_2^6 \nu(\mathrm{d}x) < \infty$.

$$\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \mathbb{E}_{\xi}[g_{h}(\theta, \xi)] = \int_{\mathbb{R}^{p}} x \left\{ \frac{f(\theta + hx) - f(\theta)}{h} \right\} \nu(\mathrm{d}x).$$

• Satisfies biased gradient assumption with $c = \sqrt{C}L/2$ where $C = \int_{\mathbb{R}^p} \|x\|_2^6 \nu(\mathrm{d}x) < \infty$.

 \bullet The smoothed gradient estimate is recovered when ν is the standard Gaussian measure.

$$\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \mathbb{E}_{\xi}[g_{h}(\theta, \xi)] = \int_{\mathbb{R}^{p}} x \left\{ \frac{f(\theta + hx) - f(\theta)}{h} \right\} \nu(\mathrm{d}x).$$

• Satisfies biased gradient assumption with $c = \sqrt{C}L/2$ where $C = \int_{\mathbb{R}^p} \|x\|_2^6 \nu(\mathrm{d}x) < \infty$.

 \bullet The smoothed gradient estimate is recovered when ν is the standard Gaussian measure.

• Take $\nu = \sum_{k=1}^{p} \delta_{e_k} / p$ covers the finite differences estimate.

$$\forall h > 0, \theta \in \mathbb{R}^{p}, \quad \mathbb{E}_{\xi}[g_{h}(\theta, \xi)] = \int_{\mathbb{R}^{p}} x \left\{ \frac{f(\theta + hx) - f(\theta)}{h} \right\} \nu(\mathrm{d}x).$$

• Satisfies biased gradient assumption with $c = \sqrt{C}L/2$ where $C = \int_{\mathbb{R}^p} \|x\|_2^6 \nu(\mathrm{d}x) < \infty$.

 \bullet The smoothed gradient estimate is recovered when ν is the standard Gaussian measure.

- Take $\nu = \sum_{k=1}^{p} \delta_{e_k} / p$ covers the finite differences estimate.
- (MUSKETEER) Use a measure ν that evolves through time and put different weights on the different directions !
• f is L-smooth and lower bounded by f^* .

- f is L-smooth and lower bounded by f^* .
- ullet (Growth condition) With probability 1, there exist 0 $\leq \mathcal{L}, \sigma^2 < \infty$

 $\forall h > 0, \theta \in \mathbb{R}^p \quad \mathbb{E}\left[\| \boldsymbol{g}_h(\theta, \xi) \|_{\infty}^2 \right] \leq 2\mathcal{L}\left(f(\theta) - f^{\star}\right) + \sigma^2.$

- f is L-smooth and lower bounded by f^* .
- ullet (Growth condition) With probability 1, there exist 0 $\leq \mathcal{L}, \sigma^2 < \infty$

 $\forall h > 0, \theta \in \mathbb{R}^{p} \quad \mathbb{E}\left[\| \mathbf{g}_{h}(\theta, \xi) \|_{\infty}^{2} \right] \leq 2\mathcal{L}\left(f(\theta) - f^{\star}\right) + \sigma^{2}.$

Gradient generator $g_t = g_{h_{t+1}}(\theta_t, \xi_{t+1})$

- f is L-smooth and lower bounded by f^* .
- (Growth condition) With probability 1, there exist 0 $\leq \mathcal{L}, \sigma^2 < \infty$

 $\forall h > 0, \theta \in \mathbb{R}^p \quad \mathbb{E}\left[\| \mathbf{g}_h(\theta, \xi) \|_{\infty}^2 \right] \leq 2\mathcal{L}\left(f(\theta) - f^{\star}\right) + \sigma^2.$

Gradient generator $\boldsymbol{g}_t = \boldsymbol{g}_{h_{t+1}}(\theta_t, \xi_{t+1})$

$$(SGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} \mathbf{g}_t$$

Theorem (Almost sure convergence of (biased) SGD)

Let (θ_t) obtained by SGD and assume that the learning rates satisfy the Robbins-Monro condition and $h_t^2 = O(\gamma_t)$ then $\nabla f(\theta_t) \to 0$ a.s. when $t \to \infty$.

- f is L-smooth and lower bounded by f^* .
- (Growth condition) With probability 1, there exist 0 $\leq \mathcal{L}, \sigma^2 < \infty$

 $\forall h > 0, \theta \in \mathbb{R}^p \quad \mathbb{E}\left[\| \mathbf{g}_h(\theta, \xi) \|_{\infty}^2 \right] \leq 2\mathcal{L}\left(f(\theta) - f^{\star}\right) + \sigma^2.$

Gradient generator $\boldsymbol{g}_t = \boldsymbol{g}_{h_{t+1}}(\theta_t, \xi_{t+1})$

$$(SGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} g_t$$

Theorem (Almost sure convergence of (biased) SGD)

Let (θ_t) obtained by SGD and assume that the learning rates satisfy the Robbins-Monro condition and $h_t^2 = O(\gamma_t)$ then $\nabla f(\theta_t) \to 0$ a.s. when $t \to \infty$.

• When f coercive and unique solution $\{\theta : \nabla f(\theta) = 0\} = \{\theta^*\}$ then almost sure convergence towards minimizer $\theta_t \to \theta^*$.

Main results: particular SCGD

$$(SGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} g_t$$
$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g_t$$

$$(SGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} g_t$$
$$(SCGD) \quad \theta_{t+1} = \theta_t - \gamma_{t+1} D(\zeta_{t+1}) g_t$$

Theorem (Almost sure convergence of particular SCGD)

Let (θ_t) obtained by SCGD and assume that the learning rates satisfy the Robbins-Monro condition and $h_t^2 = O(\gamma_t)$: (i) (max gradient) if $\zeta_{t+1} = \arg \max_{k=1,...,p} |\partial_k f(\theta_t)|$ then $\nabla f(\theta_t) \to 0$ almost surely as $t \to +\infty$. (ii) (gradient weights) if $D_t \propto (|\nabla_k f(\theta_t)|^q)_{1 \le k \le p}$ with q > 0 then $\nabla f(\theta_t) \to 0$ almost surely as $t \to +\infty$.

 $\beta_{t+1} = \min_{1 \le k \le p} d_t^{(k)}$. The sequences $(\gamma_t)_{t \ge 1}$ and $(\beta_t)_{t \ge 1}$ are positive with $\sum_{t \ge 1} \gamma_t \beta_t = +\infty, \sum_{t \ge 1} \gamma_t^2 < +\infty$.

 $\beta_{t+1} = \min_{1 \le k \le p} d_t^{(k)}$. The sequences $(\gamma_t)_{t \ge 1}$ and $(\beta_t)_{t \ge 1}$ are positive with $\sum_{t \ge 1} \gamma_t \beta_t = +\infty, \sum_{t \ge 1} \gamma_t^2 < +\infty$.

• Note that $D_t = I_p$ recovers SGD with standard Robbins-Monro.

 $\beta_{t+1} = \min_{1 \le k \le p} d_t^{(k)}$. The sequences $(\gamma_t)_{t \ge 1}$ and $(\beta_t)_{t \ge 1}$ are positive with $\sum_{t \ge 1} \gamma_t \beta_t = +\infty, \sum_{t \ge 1} \gamma_t^2 < +\infty$.

• Note that $D_t = I_p$ recovers SGD with standard Robbins-Monro.

Theorem (Almost sure convergence general SCGD)

Let (θ_t) obtained by SCGD and assume that the learning rates satisfy the extended Robbins-Monro condition and $h_t^2 = O(\gamma_t)$. If (β_t) is lower bounded then $\nabla f(\theta_t) \to 0$ almost surely as $t \to +\infty$.

 $\beta_{t+1} = \min_{1 \le k \le p} d_t^{(k)}$. The sequences $(\gamma_t)_{t \ge 1}$ and $(\beta_t)_{t \ge 1}$ are positive with $\sum_{t \ge 1} \gamma_t \beta_t = +\infty, \sum_{t \ge 1} \gamma_t^2 < +\infty$.

• Note that $D_t = I_p$ recovers SGD with standard Robbins-Monro.

Theorem (Almost sure convergence general SCGD)

Let (θ_t) obtained by SCGD and assume that the learning rates satisfy the extended Robbins-Monro condition and $h_t^2 = O(\gamma_t)$. If (β_t) is lower bounded then $\nabla f(\theta_t) \to 0$ almost surely as $t \to +\infty$.

• Similarly with stronger assumptions (f coercive, unique critical point), there is convergence of the iterates towards minimizer θ^* .

Theorem (Almost sure convergence)

The sequence of iterates $(\theta_t)_{t\geq 0}$ obtained by the MUSKETEER satisfies $\nabla f(\theta_t) \rightarrow 0$ almost surely as $t \rightarrow +\infty$.

Theorem (Almost sure convergence)

The sequence of iterates $(\theta_t)_{t\geq 0}$ obtained by the MUSKETEER satisfies $\nabla f(\theta_t) \rightarrow 0$ almost surely as $t \rightarrow +\infty$.

Theorem (Weak convergence)

The MUSKETEER's coordinate policy $(Q(d_n))_{n \in \mathbb{N}}$ converges weakly to the uniform distribution, i.e., $Q(d_n) \rightsquigarrow \mathcal{U}(\llbracket 1, p \rrbracket)$ as $n \to +\infty$.

Theorem (Almost sure convergence)

The sequence of iterates $(\theta_t)_{t\geq 0}$ obtained by the MUSKETEER satisfies $\nabla f(\theta_t) \rightarrow 0$ almost surely as $t \rightarrow +\infty$.

Theorem (Weak convergence)

The MUSKETEER's coordinate policy $(Q(d_n))_{n \in \mathbb{N}}$ converges weakly to the uniform distribution, i.e., $Q(d_n) \rightsquigarrow \mathcal{U}(\llbracket 1, p \rrbracket)$ as $n \to +\infty$.

Theorem (Non-asymptotic bounds, (Moulines and Bach, 2011)) Let $(\theta_t)_{t\in\mathbb{N}}$ obtained by MUSKETEER with $\gamma_t = \gamma t^{-\alpha}$ then

$$\mathbb{E}\left[f(\theta_t) - f^*\right] = O(1/t), \quad (\alpha = 1)$$

- Study the behavior of the rescaled sequence $(\theta_t \theta^*)/\sqrt{\gamma_t}$ for MUSKETEER and general SCGD methods.
- Study the asymptotic behavior of other adaptive sampling strategies
- \bullet Study the extensions with Nesterov acceleration schemes and momentum

Thank you

References

- Agarwal, A., P. L. Bartlett, P. Ravikumar, and M. J. Wainwright (2012). Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. *IEEE Transactions on Information Theory* 58(5), 3235–3249.
- Agarwal, A., M. J. Wainwright, P. L. Bartlett, and P. K. Ravikumar (2009). Information-theoretic lower bounds on the oracle complexity of convex optimization. In Advances in Neural Information Processing Systems, pp. 1–9.
- Agarwal, N., B. Bullins, and E. Hazan (2016). Second-order stochastic optimization in linear time. *stat 1050*, 15.
- Alain, G., A. Lamb, C. Sankar, A. Courville, and Y. Bengio (2015). Variance reduction in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481.
- Alber, Y. I., A. N. lusem, and M. V. Solodov (1998). On the projected subgradient method for nonsmooth convex optimization in a hilbert space. *Mathematical Programming* 81(1), 23–35.

Bibliography ii

- Alistarh, D., D. Grubic, J. Li, R. Tomioka, and M. Vojnovic (2017). Qsgd: Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural Information Processing Systems, pp. 1709–1720.
- Alistarh, D., T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli (2018). The convergence of sparsified gradient methods. In Advances in Neural Information Processing Systems, pp. 5973–5983.
- Allen-Zhu, Z., Z. Qu, P. Richtárik, and Y. Yuan (2016). Even faster accelerated coordinate descent using non-uniform sampling. In *International Conference on Machine Learning*, pp. 1110–1119.
- Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation 10(2), 251–276.
- Aude, G., M. Cuturi, G. Peyré, and F. Bach (2016). Stochastic optimization for large-scale optimal transport. arXiv preprint arXiv:1605.08527.
- Auer, P., N. Cesa-Bianchi, and P. Fischer (2002). Finite-time analysis of the multiarmed bandit problem. *Machine learning* 47(2-3), 235–256.
- Auer, P., N. Cesa-Bianchi, Y. Freund, and R. E. Schapire (2002). The nonstochastic multiarmed bandit problem. SIAM journal on computing 32(1), 48–77.

Bibliography iii

- Barakat, A. and P. Bianchi (2018). Convergence and dynamical behavior of the adam algorithm for non convex stochastic optimization. arXiv preprint arXiv:1810.02263.
- Baxter, J. and P. L. Bartlett (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence Research 15, 319–350.
- Beck, A. and L. Tetruashvili (2013). On the convergence of block coordinate descent type methods. *SIAM journal on Optimization 23*(4), 2037–2060.
- Bellman, R. and R. Kalaba (1957). Dynamic programming and statistical communication theory. Proceedings of the National Academy of Sciences of the United States of America 43(8), 749.
- Benveniste, A., M. Métivier, and P. Priouret (2012). Adaptive algorithms and stochastic approximations, Volume 22. Springer Science & Business Media.
- Bercu, B., B. Delyon, and E. Rio (2015). *Concentration inequalities for sums and martingales*. Springer.
- Bertsekas, D. P. and J. N. Tsitsiklis (1996). *Neuro-dynamic programming*, Volume 5. Athena Scientific Belmont, MA.
- Bertsekas, D. P. and J. N. Tsitsiklis (2000). Gradient convergence in gradient methods with errors. *SIAM Journal on Optimization 10*(3), 627–642.

Bibliography iv

- Borel, M. É. (1909). Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884-1940) 27(1), 247–271.
- Bottou, L. and O. Bousquet (2008). The tradeoffs of large scale learning. In Advances in neural information processing systems, pp. 161–168.
- Bottou, L., F. E. Curtis, and J. Nocedal (2018). Optimization methods for large-scale machine learning. *Siam Review 60*(2), 223–311.
- Bottou, L. and C.-J. Lin (2007). Support vector machine solvers. Large scale kernel machines 3(1), 301–320.
- Boucheron, S., G. Lugosi, and P. Massart (2013). Concentration Inequalities. Oxford University Press.
- Boyer, C. and A. Godichon-Baggioni (2020). On the asymptotic rate of convergence of stochastic newton algorithms and their weighted averaged versions. *arXiv* preprint arXiv:2011.09706.
- Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms 1. general considerations. *IMA Journal of Applied Mathematics* 6(1), 76–90.

Bibliography v

- Bubeck, S. et al. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine Learning 8(3-4), 231–357.
- Byrd, R. H., G. M. Chin, W. Neveitt, and J. Nocedal (2011). On the use of stochastic hessian information in optimization methods for machine learning. SIAM Journal on Optimization 21(3), 977–995.
- Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on scientific computing 16(5), 1190–1208.
- Cardoso, J.-F. (1998). Blind signal separation: statistical principles. Proceedings of the IEEE 86(10), 2009–2025.
- Chen, H.-F., L. Guo, and A.-J. Gao (1987). Convergence and robustness of the robbins-monro algorithm truncated at randomly varying bounds. *Stochastic Processes and their Applications* 27, 217–231.
- Clémençon, S., P. Bertail, E. Chautru, and G. Papa (2019). Optimal survey schemes for stochastic gradient descent with applications to m-estimation. *ESAIM: Probability and Statistics 23*, 310–337.

Bibliography vi

- Csiba, D., Z. Qu, and P. Richtárik (2015). Stochastic dual coordinate ascent with adaptive probabilities. In *International Conference on Machine Learning*, pp. 674–683.
- Defazio, A., F. Bach, and S. Lacoste-Julien (2014). Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in neural information processing systems, pp. 1646–1654.
- Dekel, O., R. Gilad-Bachrach, O. Shamir, and L. Xiao (2012). Optimal distributed online prediction using mini-batches. *Journal of Machine Learning Research* 13(Jan), 165–202.
- Delyon, B. (1996). General results on the convergence of stochastic algorithms. *IEEE Transactions on Automatic Control* 41(9), 1245–1255.
- Delyon, B. (2000). Stochastic approximation with decreasing gain: Convergence and asymptotic theory. *Unpublished lecture notes, Université de Rennes*, 26.
- Delyon, B. and F. Portier (2018). Asymptotic optimality of adaptive importance sampling. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 3138–3148. Curran Associates Inc.
- Delyon, B. and F. Portier (2019). Adaptive importance sampling by kernel smoothing. arXiv preprint arXiv:1903.08507.

Bibliography vii

- Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE Signal Processing Magazine* 29(6), 141–142.
- Dodu, J., M. Goursat, A. Hertz, J. Quadrat, and M. Viot (1981). Méthodes de gradient stochastique pour l'optimisation des investissements dans un réseau électrique. EDF Bulletin de la Direction des Etudes et Recherches, série C-mathématiques, informatique (2), 133–164.
- Dua, D. and C. Graff (2017). UCI machine learning repository.
- Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research* 12(Jul), 2121–2159.
- Duflo, M. (2013). *Random iterative models*, Volume 34. Springer Science & Business Media.
- Fan, R.-E., P.-H. Chen, C.-J. Lin, and T. Joachims (2005). Working set selection using second order information for training support vector machines. *Journal of machine learning research* 6(12).
- Fazel, M., R. Ge, S. M. Kakade, and M. Mesbahi (2018). Global convergence of policy gradient methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039.

Bibliography viii

- Feinberg, V., A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine (2018). Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101.
- Fercoq, O., Z. Qu, P. Richtárik, and M. Takáč (2014). Fast distributed coordinate descent for non-strongly convex losses. In 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE.
- Fercoq, O. and P. Richtárik (2015). Accelerated, parallel, and proximal coordinate descent. SIAM Journal on Optimization 25(4), 1997–2023.
- Fletcher, R. (1970). A new approach to variable metric algorithms. The computer journal 13(3), 317–322.
- Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of statistical software 33*(1), 1.
- Gadat, S., F. Panloup, S. Saadane, et al. (2018). Stochastic heavy ball. *Electronic Journal of Statistics* 12(1), 461–529.
- Gazagnadou, N., R. M. Gower, and J. Salmon (2019). Optimal mini-batch and step sizes for saga. *arXiv preprint arXiv:1902.00071*.

Bibliography ix

- Glasmachers, T. and U. Dogan (2013). Accelerated coordinate descent with adaptive coordinate frequencies. In *Asian Conference on Machine Learning*, pp. 72–86.
- Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. *Mathematics of computation* 24(109), 23–26.
- Gopal, S. (2016). Adaptive sampling for sgd by exploiting side information. In *International Conference on Machine Learning*, pp. 364–372.
- Gower, R. M., N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik (2019). Sgd: General analysis and improved rates. arXiv preprint arXiv:1901.09401.
- Gower, R. M., P. Richtárik, and F. Bach (2018). Stochastic quasi-gradient methods: Variance reduction via jacobian sketching. *arXiv preprint arXiv:1805.02632*.
- Hall, P. and C. Heyde (1980). *Martingale Limit Theory and Its Application*. Probability and mathematical statistics. Academic Press.
- Hall, P. and C. C. Heyde (2014). *Martingale limit theory and its application*. Academic press.
- Hanna, J., S. Niekum, and P. Stone (2019). Importance sampling policy evaluation with an estimated behavior policy. In *International Conference on Machine Learning*, pp. 2605–2613. PMLR.

Bibliography x

Hoffman, M. D., D. M. Blei, C. Wang, and J. Paisley (2013). Stochastic variational inference. *The Journal of Machine Learning Research* 14(1), 1303–1347.

Howard, R. A. (1960). Dynamic programming and markov processes.

- Johnson, R. and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pp. 315–323.
- Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems, pp. 1531–1538.
- Karimi, H., J. Nutini, and M. Schmidt (2016). Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 795–811. Springer.
- Kesten, H. et al. (1958). Accelerated stochastic approximation. The Annals of Mathematical Statistics 29(1), 41–59.
- Khalil, H. K. (2002). *Nonlinear systems; 3rd ed.* Upper Saddle River, NJ: Prentice-Hall.

Bibliography xi

- Kiefer, J., J. Wolfowitz, et al. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics 23(3), 462–466.
- Krizhevsky, A., G. Hinton, et al. (2009). Learning multiple layers of features from tiny images.
- Kushner, H. and G. G. Yin (2003). *Stochastic approximation and recursive algorithms and applications*, Volume 35. Springer Science & Business Media.
- Kushner, H. J. and D. S. Clark (1978). Stochastic approximation methods for constrained and unconstrained systems.
- Kushner, H. J. and H. Huang (1979). Rates of convergence for stochastic approximation type algorithms. SIAM Journal on Control and Optimization 17(5), 607–617.
- Lai, T. L. et al. (2003). Stochastic approximation. *The annals of Statistics 31*(2), 391–406.
- LeCun, Y. A., L. Bottou, G. B. Orr, and K.-R. Müller (2012). Efficient backprop. In Neural networks: Tricks of the trade, pp. 9–48. Springer.

Bibliography xii

- Lee, Y. T. and A. Sidford (2013). Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems. In *2013 IEEE 54th Annual Symposium on Foundations of Computer Science*, pp. 147–156. IEEE.
- Leluc, R. and F. Portier (2020). Towards asymptotic optimality with conditioned stochastic gradient descent. arXiv preprint arXiv:2006.02745.
- Levine, S. and V. Koltun (2013). Guided policy search. In International Conference on Machine Learning, pp. 1–9.
- Loshchilov, I., M. Schoenauer, and M. Sebag (2011). Adaptive coordinate descent. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp. 885–892.
- Lu, Z. and L. Xiao (2015). On the complexity analysis of randomized block-coordinate descent methods. *Mathematical Programming* 152(1-2), 615–642.
- Marceau-Caron, G. and Y. Ollivier (2016). Practical riemannian neural networks. *arXiv preprint arXiv:1602.08007*.
- Martens, J. (2014). New insights and perspectives on the natural gradient method. *arXiv preprint arXiv:1412.1193*.

Bibliography xiii

- Moulines, E. and F. R. Bach (2011). Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pp. 451–459.
- Murata, N. (1998). A statistical study of on-line learning. Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 63–92.
- Namkoong, H., A. Sinha, S. Yadlowsky, and J. C. Duchi (2017). Adaptive sampling probabilities for non-smooth optimization. In *International Conference on Machine Learning*, pp. 2574–2583.
- Necoara, I., Y. Nesterov, and F. Glineur (2014). A random coordinate descent method on large-scale optimization problems with linear constraints. Technical report, Technical Report.
- Necoara, I., Y. Nesterov, and F. Glineur (2019). Linear convergence of first order methods for non-strongly convex optimization. *Mathematical Programming* 175(1-2), 69–107.
- Needell, D., R. Ward, and N. Srebro (2014). Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm. In Advances in neural information processing systems, pp. 1017–1025.

Bibliography xiv

- Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro (2009). Robust stochastic approximation approach to stochastic programming. *SIAM Journal on optimization* 19(4), 1574–1609.
- Nemirovski, A. S. and D. B. Yudin (1983). Problem complexity and method efficiency in optimization.
- Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization 22(2), 341–362.
- Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, Volume 87. Springer Science & Business Media.
- Nesterov, Y. and V. Spokoiny (2017). Random gradient-free minimization of convex functions. *Foundations of Computational Mathematics* 17(2), 527–566.
- Nesterov, Y. and J.-P. Vial (2008). Confidence level solutions for stochastic programming. *Automatica* 44(6), 1559–1568.
- Nevelson, M. B. and R. Z. Khas'minskii (1976). *Stochastic approximation and recursive estimation*, Volume 47. American Mathematical Soc.

Bibliography xv

- Nguyen, L. M., P. H. Nguyen, M. van Dijk, P. Richtárik, K. Scheinberg, and M. Takáč (2018). Sgd and hogwild! convergence without the bounded gradients assumption. arXiv preprint arXiv:1802.03801.
- Nutini, J., M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke (2015). Coordinate descent converges faster with the gauss-southwell rule than random selection. In *International Conference on Machine Learning*, pp. 1632–1641.
- Papa, G., P. Bianchi, and S. Clémençon (2015). Adaptive sampling for incremental optimization using stochastic gradient descent. In *International Conference on Algorithmic Learning Theory*, pp. 317–331. Springer.
- Papini, M., D. Binaghi, G. Canonaco, M. Pirotta, and M. Restelli (2018). Stochastic variance-reduced policy gradient. arXiv preprint arXiv:1806.05618.
- Papini, M., M. Pirotta, and M. Restelli (2019). Smoothing policies and safe policy gradients. arXiv preprint arXiv:1905.03231.
- Park, H., S.-I. Amari, and K. Fukumizu (2000). Adaptive natural gradient learning algorithms for various stochastic models. *Neural Networks* 13(7), 755–764.
- Patel, K. K. and A. Dieuleveut (2019). Communication trade-offs for local-sgd with large step size. Advances In Neural Information Processing Systems 32 (Nips 2019) 32(CONF).

Bibliography xvi

- Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. (2011). Scikit-learn: Machine learning in python. *the Journal of machine Learning research 12*, 2825–2830.
- Pelletier, M. (1998a). On the almost sure asymptotic behaviour of stochastic algorithms. *Stochastic processes and their applications* 78(2), 217–244.
- Pelletier, M. (1998b). Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. *Annals of Applied Probability*, 10–44.
- Perekrestenko, D., V. Cevher, and M. Jaggi (2017). Faster coordinate descent via adaptive importance sampling. In *Artificial Intelligence and Statistics*, pp. 869–877. PMLR.
- Peters, J. and S. Schaal (2008a). Natural actor-critic. *Neurocomputing* 71(7-9), 1180–1190.
- Peters, J. and S. Schaal (2008b). Reinforcement learning of motor skills with policy gradients. *Neural networks* 21(4), 682–697.

Bibliography xvii

- Plakhov, A. and P. Cruz (2009). A stochastic approximation algorithm with multiplicative step size modification. *Mathematical Methods of Statistics* 18(2), 185–200.
- Polyak, B. T. (1963). Gradient methods for minimizing functionals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 3(4), 643–653.
- Polyak, B. T. (1976). Convergence and rate of convergence in iterative stochastic processes. i. the general case. Avtomatika i telemekhanika (12), 83–94.
- Polyak, B. T. (1990). A new method of stochastic approximation type. Avtomatika i telemekhanika (7), 98–107.
- Polyak, B. T. and A. B. Juditsky (1992). Acceleration of stochastic approximation by averaging. *SIAM Journal on Control and Optimization 30*(4), 838–855.
- Polyak, B. T. and Y. Z. Tsypkin (1979). Adaptive estimation algorithms: convergence, optimality, stability. Avtomatika i Telemekhanika (3), 71–84.
- Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.
- Qu, Z. and P. Richtárik (2016). Coordinate descent with arbitrary sampling i: Algorithms and complexity. Optimization Methods and Software 31(5), 829–857.

Bibliography xviii

- Qu, Z., P. Richtárik, and T. Zhang (2015). Quartz: Randomized dual coordinate ascent with arbitrary sampling. In Advances in neural information processing systems, pp. 865–873.
- Richtárik, P. and M. Takáč (2013). On optimal probabilities in stochastic coordinate descent methods. *arXiv preprint arXiv:1310.3438*.
- Richtárik, P. and M. Takáč (2014). Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. *Mathematical Programming* 144(1-2), 1–38.
- Richtárik, P. and M. Takáč (2016). Parallel coordinate descent methods for big data optimization. *Mathematical Programming* 156(1-2), 433–484.
- Robbins, H. and S. Monro (1951). A stochastic approximation method. The annals of mathematical statistics, 400–407.
- Robbins, H. and D. Siegmund (1971). A convergence theorem for non negative almost supermartingales and some applications. In *Optimizing methods in statistics*, pp. 233–257. Elsevier.
- Ruppert, D. (1988). Efficient estimations from a slowly convergent robbins-monro process. Technical report, Cornell University Operations Research and Industrial Engineering.

Bibliography xix

- Schmidt, M. and N. L. Roux (2013). Fast convergence of stochastic gradient descent under a strong growth condition. arXiv preprint arXiv:1308.6370.
- Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz (2015). Trust region policy optimization. In *International Conference on Machine Learning*, pp. 1889–1897.
- Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
- Shalev-Shwartz, S., O. Shamir, N. Srebro, and K. Sridharan (2009). Stochastic convex optimization. In COLT.
- Shalev-Shwartz, S., Y. Singer, N. Srebro, and A. Cotter (2011). Pegasos: Primal estimated sub-gradient solver for svm. *Mathematical programming* 127(1), 3–30.
- Shalev-Shwartz, S. and A. Tewari (2011). Stochastic methods for I 1-regularized loss minimization. *The Journal of Machine Learning Research 12*, 1865–1892.
- Shalev-Shwartz, S. and T. Zhang (2013). Stochastic dual coordinate ascent methods for regularized loss minimization. *Journal of Machine Learning Research* 14(Feb), 567–599.

Bibliography xx

- Shanno, D. F. (1970). Conditioning of quasi-newton methods for function minimization. *Mathematics of computation* 24(111), 647–656.
- Sutton, R. S., A. G. Barto, et al. (1998). *Introduction to reinforcement learning*, Volume 2. MIT press Cambridge.
- Wangni, J., J. Wang, J. Liu, and T. Zhang (2018). Gradient sparsification for communication-efficient distributed optimization. In Advances in Neural Information Processing Systems, pp. 1299–1309.
- Welford, B. (1962). Note on a method for calculating corrected sums of squares and products. *Technometrics* 4(3), 419–420.
- Wen, Z., D. Goldfarb, and K. Scheinberg (2012). Block coordinate descent methods for semidefinite programming. In *Handbook on semidefinite, conic and polynomial optimization*, pp. 533–564. Springer.
- Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning* 8(3-4), 229–256.
- Wu, T. T., K. Lange, et al. (2008). Coordinate descent algorithms for lasso penalized regression. Annals of Applied Statistics 2(1), 224–244.
- Xiao, H., K. Rasul, and R. Vollgraf (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.
- Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent algorithms. In *Proceedings of the twenty-first international conference on Machine learning*, pp. 116.
- Zhao, P. and T. Zhang (2015). Stochastic optimization with importance sampling for regularized loss minimization. In *international conference on machine learning*, pp. 1–9.