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Introduction



Motivations

• Random vector X = (X 1, . . . ,X p) ∈ Rp
+, p ≥ 1 with Pareto margins.

e.g. spatial fields, asset prices, in risk management: sensor networks
(road/internet traffic) or financial assets

• Extreme regions {x ∈ Rp, ‖x‖ > t}, t � 0.
e.g. traffic jam, flood, network congestion, falling price
• Our interest lies in the extreme dependence: Identifying the features
X j ’s contributing to X being extreme → feature clustering.
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Goal: Identify Clusters of Features

e1

e2

e3

Goal
Identify clusters of features K ⊂ J1, pK such that the variables
{X j : j ∈ K} may be large while the other variables X j for j /∈ K

simultaneously remain small.

Assume that Ki ∩ Kj = ∅ for i 6= j (e.g. smart grids, portfolio
diversity,...), |Ki | > 1 for i ≤ m.
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Our Intuition

Search a subset K of features such that the `1-norms of X and its
restriction X (K) are almost equal i.e.

‖X‖1 ≈ ‖X (K)‖1.

Example: p = 7 and K = {3, 4, 5}

X = (∗, ∗,∗,∗,∗, ∗, ∗), ‖X‖1 = 3∗+ 3∗

X (K) = (0, 0,∗,∗,∗, 0, 0), ‖X (K)‖1 = 3∗
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Related work

• Analysis of the (Sparse) Dependence Structure
Chautru (2015); Chiapino and Sabourin (2016); Goix et al. (2016);
Engelke and Hitz (2018); Chiapino et al. (2019)

• Dimension reduction techniques (PCA and derivatives)
(Wold et al., 1987; Cutler and Breiman, 1994; Tipping and Bishop, 1999;
Cooley and Thibaud, 2019; Drees and Sabourin, 2019)

• Sparse support of multivariate extremes
(De Haan and Ferreira, 2007; Chiapino and Sabourin, 2016; Meyer and
Wintenberger, 2019; Engelke and Ivanovs, 2020)
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Our Contributions

Problem
How to jointly find the extremes’ structure dependence ?

• Optimization approach to perform subspace clustering of extreme
regions: Empirical Risk Minimization (ERM) on the probability simplex
with a non-asymptotic bound.

• Algorithm: find a sparse representation for the structure dependence.
Multivariate EXtreme Informative Clustering by Optimization

• Numerical Experiments on both feature clustering and anomaly
detection tasks in extreme regions.
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Mathematical Background



Multivariate Regular Variation

X = (X 1, . . . ,X p) with continuous marginal cdf’s F 1, . . . ,F p

Definition: Multivariate regular variation (Resnick (1987))

For subsets of Rp
+ \ {0} bounded away from origin:

tP{t−1X ∈ ·} −−−→
t→∞

µ(·),

The limit measure µ on Rd
+ \ {0} is homogeneous:

∀λ > 0, µ(λA) = λ−1µ(A)

with 0 6∈ A, µ(∂A) = 0.

0 1

λA

A
8



From Exponent Measure to Angular Measure

Angular measure Φ and directions of extremes

Φ is defined on S = {x ∈ Rd
+, ||x ||∞ = 1},

Φ(B) = µ({x ∈ Rd
+, ||x ||∞ ≥ 1,Θ(x) ∈ B})

with Θ(x) = x/||x ||∞.

0 1

λA

A
B

9



Angular Measure and Feature Clustering

The angular measure Φ characterizes the directions where extremes are
more likely to occur.

• The support of Φ → features that are more likely to jointly be large.

• We address the problem of finding different feature clusters Kj ⊂ J1, pK
with j = 1, . . . ,m and m < p such that all features in a same subset may
be large together.

• Relying on the m clusters of features K1, . . . ,Km, Φ can be
approximated as

Φ(·) ≈
m∑
j=1

ΦKj (·).

Each component ΦKj is concentrated on the subregion given by the
features of cluster Kj .
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Empirical Risk Minimization (ERM)

• Observed i.i.d. copies z1, . . . , zn ∈ Z of random variable z

• Loss function ` : G × Z → R
• Goal is to minimize the unknown true risk R(g) = Ez [`(g , z)]

• Empirical counterpart, for all g ∈ G,

R(g) = Ez [`(g , z)] R̂n(g) =
1
n

n∑
i=1

`(g , zi ).

Examples: z = (x , y) with data x ∈ X ⊂ Rp and label y ∈ Y.
• (L2 Regression) Y = R, `(g , (x , y)) = (y − g(x))2

• (Classification) Y = {−1,+1}, `(g , (x , y)) = 1{g(x) 6= y}
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ERM in Extreme Regions



ERM in Extreme Regions

• n ≥ 1 i.i.d copies X1, . . . ,Xn of X (Pareto margins)
• Loss function ` : Rp

+ × R+ → R+ measuring the discrepancy between
the true extreme dependence structure of X and its prediction g (X ).
• Find g to minimize the risk at level tγ

Rtγ (g) = EX

[
` (X , g (X ))

∣∣∣‖X‖∞ > tγ
]
,

• Based on the extreme observations X(1), . . . ,X(k), the empirical risk is

R̂k(g) =
1
k

k∑
i=1

`
(
X(i), g(X(i))

)
,

where ‖X(1)‖ ≥ . . . ≥ ‖X(k)‖ ≥ . . . ≥ ‖X(n)‖.
• Denote X ∈ Rk×p

+ the data matrix of extreme observations.
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Representation g(X ) and Loss function `

• Approximate ‖X‖1 with mixtures of components of X

• Consider the probability simplex ∆p = {x ∈ Rp
+, x1 + . . . + xp = 1} and

let W ∈ Am
p with m < p be a mixture matrix (columns belonging to ∆p).

• Each column Wj for j ∈ J1,mK is modelling a mixture of components
and represents a cluster Kj .

`(X ,W ) = ‖X‖1 − ∨mj=1XW
j

Example: p = 7,K1 = {1, 2},K2 = {3, 4, 5},K3 = {6, 7}

X =


∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

 , W =



1/2 0 0
1/2 0 0
0 0 1/3
0 0 1/3
0 0 1/3
0 1/2 0
0 1/2 0
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(Non-Convex) Optimization Problem

• For each row Xi , seek a column j ∈ J1,mK for which X̃ j = (XiW)j is the
closest to ‖Xi‖1.

• Column index of a good mixture through the mapping

ϕ : J1, kK→ J1,mK, ϕ(i) = arg max
1≤j≤m

X̃ j
(i)

• Learn the mixture matrix Ŵk such that

Ŵk ∈ arg max
W∈Am

p

{
1
k

k∑
i=1

(XW)
ϕ(i)
i =

1
k

k∑
i=1

ei (XW)eϕ(i)

}
.

Warning computationally intractable (all combinations)

→ Relaxed version of the problem !
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Relaxed Version and Regularization

(Ŵk , Ẑk) ∈ arg max
(W,Z)∈Am

p ×Ak
m

f (W,Z) =
1
k

k∑
i=1

XiWZi = Tr(XWZ)/k .

• Constraint of disjoint clusters by forcing the columns of the mixture
matrix W to be orthogonal, i.e., for all i < j , 〈W i ,W j〉 = 0.
• Penalized version of the objective function with a regularization
parameter λ > 0:

fλ(W,Z) = Tr(XWZ)/k − λ
∑
i<j

〈W i ,W j〉

with partial derivatives given by{
∇Zfλ(W,Z) = (XW)T/k

∇Wfλ(W,Z) = (ZX)T/k − λW̃, W̃ j =
∑

i<j W
i .
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Projection onto Simplex

• Recover clusters that are not unit sets → avoid the vertices.
• Projection step ΠS(·) of each column of W onto a convex set S.
• x̄ = (1/p, . . . , 1/p) the barycenter of the probability simplex ∆p.
• To escape from the curse of dimensionality, we introduce the convex set
where we cut off the vertices using a threshold τ of the distance
L = ‖x̄ − ej‖2 =

√
(p − 1)/p between the barycenter and a vertex.

Sτp =

{
x ∈ ∆p| max

1≤j≤p
〈x − x̄ , ej − x̄〉 ≤ τ‖ej − x̄‖2

}
.

Define the radius rp∞(τ) = 1− (1− τ)(p − 1)/p then

Sτp = ∆p ∩ B∞,p (x̄ , τL) = ∆p ∩ B∞,p (0, rp∞(τ)) .
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Region of interest: the M-set

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

x
τ

Figure 1: Simplex of R3 with our region of interest.
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Bounding the Excess Risk

Non-asymptotic bound
Consider the risk Rtγ , k = bnγc and denote by Wmex the mixture matrix
obtained by MEXICO. Then for δ ∈ (0, 1), n ≥ 1 and τ ≤ 1 we have
with probability at least 1− δ,

Rtγ (Wmex)−Rtγ (W?
tγ ) ≤ 1√

k
C (γ, δ) +

1
k
C ′(γ, δ) + C

′′
(τ).

• Convergence rate of order OP(1/
√
k) where k is the actual size of the

dataset required to estimate the support of extreme.
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Numerical Experiments



Numerical Experiments: Anomaly Detection

Anomaly Detection

Predict if a new extreme sample Xnew ∈ Rp
+ is an anomaly, using the

value of the loss function `(Xnew,Wmex) as an anomaly score.

e1

e2

e3

• small loss → Xnew behavior is rather normal

• large loss → Xnew more likely to be an anomaly.
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Numerical Experiments: Feature Clustering

Feature Clustering

A new extreme sample Xnew ∈ Rp
+ is to be analyzed.

e1

e2

e3

• Since Xnew is extreme → predict the features that are large
simultaneously based on the clusters given by MEXICO.

• Compute the transformed sample X̃new = XnewWmex and assign the
predicted cluster of features by Pred(Xnew) = arg max1≤j≤m X̃ j

new.
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Numerical Experiments: Details

Feature Clustering

Since MEXICO is an inductive clustering method, compare with spectral
clustering Ding et al. (2005) and spherical K-means Janßen et al. (2020).
• Simulated data from an (asymmetric) logistic distribution.
• Parameter setting: dimension p ∈ {75, 100, 150, 200}, number of train
samples ntrain = 1000 and test samples ntest = 100.

Anomaly Detection

Comparison of three algorithms for anomaly detection in extreme regions:
Isolation Forest (Liu et al., 2008), DAMEX (Goix et al., 2017) and our
method MEXICO.

• Five reference AD datasets are studied: shuttle, forestcover, http, SF
and SA.
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Conclusion

• Optimization framework (ERM) for clustering features in extreme regions

• Our approach does not scan all the multiple possible subsets and
outperforms existing algorithms

• Future work will focus on the statistical properties of the developed
algorithm by further exploring links with kernel methods
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Questions and Answers

• Our paper: https://arxiv.org/abs/2008.07365

• Thank You!
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