Feature Clustering for Support Identification in Extreme Regions

Hamid Jalalzai, Rémi Leluc June 29th, 2021 Extreme Value Analysis

Introduction

Mathematical Background

ERM in Extreme Regions

Numerical Experiments

Conclusion

Introduction

Motivations

• Random vector $X = (X^1, \dots, X^p) \in \mathbb{R}^p_+$, $p \ge 1$ with Pareto margins.

e.g. spatial fields, asset prices, in risk management: sensor networks (road/internet traffic) or financial assets

Motivations

• Random vector $X = (X^1, \ldots, X^p) \in \mathbb{R}^p_+$, $p \ge 1$ with Pareto margins. *e.g.* spatial fields, asset prices, in risk management: sensor networks (road/internet traffic) or financial assets

• Extreme regions $\{x \in \mathbb{R}^p, \|x\| > t\}$, $t \gg 0$.

e.g. traffic jam, flood, network congestion, falling price

Motivations

• Random vector $X = (X^1, \ldots, X^p) \in \mathbb{R}^p_+$, $p \ge 1$ with Pareto margins. *e.g.* spatial fields, asset prices, in risk management: sensor networks (road/internet traffic) or financial assets

- Extreme regions $\{x \in \mathbb{R}^p, \|x\| > t\}$, $t \gg 0$.
- e.g. traffic jam, flood, network congestion, falling price
- Our interest lies in the extreme dependence: Identifying the features X^{j} 's contributing to X being extreme \rightarrow feature clustering.

Goal: Identify Clusters of Features

Goal

Identify **clusters of features** $K \subset [\![1, p]\!]$ such that the variables $\{X^j : j \in K\}$ may be large while the other variables X^j for $j \notin K$ simultaneously remain small.

Assume that $K_i \cap K_j = \emptyset$ for $i \neq j$ (e.g. smart grids, portfolio diversity,...), $|K_i| > 1$ for $i \leq m$.

Search a subset K of features such that the ℓ_1 -norms of X and its restriction $X^{(K)}$ are almost equal *i.e.*

 $||X||_1 \approx ||X^{(K)}||_1.$

Example:
$$p = 7$$
 and $K = \{3, 4, 5\}$
 $X = (*, *, *, *, *, *, *), \quad ||X||_1 = 3* + 3*$
 $X^{(K)} = (0, 0, *, *, *, 0, 0), \quad ||X^{(K)}||_1 = 3*$

• Analysis of the (Sparse) Dependence Structure Chautru (2015); Chiapino and Sabourin (2016); Goix et al. (2016); Engelke and Hitz (2018); Chiapino et al. (2019)

• Dimension reduction techniques (PCA and derivatives) (Wold et al., 1987; Cutler and Breiman, 1994; Tipping and Bishop, 1999; Cooley and Thibaud, 2019; Drees and Sabourin, 2019)

• Sparse support of multivariate extremes (De Haan and Ferreira, 2007; Chiapino and Sabourin, 2016; Meyer and Wintenberger, 2019; Engelke and Ivanovs, 2020)

Problem

How to jointly find the extremes' structure dependence ?

• **Optimization** approach to perform subspace clustering of extreme regions: Empirical Risk Minimization (ERM) on the probability simplex with a non-asymptotic bound.

• Algorithm: find a sparse representation for the structure dependence. Multivariate EXtreme Informative Clustering by Optimization

• **Numerical Experiments** on both *feature clustering* and *anomaly detection* tasks in extreme regions.

Mathematical Background

Multivariate Regular Variation

 $X = (X^1, \dots, X^p)$ with continuous marginal cdf's F^1, \dots, F^p

Definition: Multivariate regular variation (Resnick (1987))

For subsets of $\mathbb{R}^{p}_{+} \setminus \{0\}$ bounded away from origin:

$$t\mathbb{P}\{t^{-1}X\in \cdot\}\xrightarrow[t\to\infty]{}\mu(\cdot),$$

The limit measure μ on $\mathbb{R}^d_+ \setminus \{0\}$ is homogeneous:

$$\forall \lambda > 0, \qquad \mu(\lambda \mathbf{A}) = \lambda^{-1} \mu(\mathbf{A})$$

with $0 \notin A$, $\mu(\partial A) = 0$.

From Exponent Measure to Angular Measure

Angular measure Φ and directions of extremes

 Φ is defined on $\mathbb{S} = \{x \in \mathbb{R}^d_+, \ ||x||_{\infty} = 1\}$,

$$\Phi({old B})=\mu(\{x\in \mathbb{R}^d_+,||x||_\infty\geq 1,\Theta(x)\in {old B}\})$$

with $\Theta(x) = x/||x||_{\infty}$.

The angular measure Φ characterizes the directions where extremes are more likely to occur.

 \bullet The support of $\Phi \to$ features that are more likely to jointly be large.

• We address the problem of finding different feature clusters $K_j \subset [\![1, p]\!]$ with j = 1, ..., m and m < p such that all features in a same subset may be large together.

• Relying on the *m* clusters of features K_1, \ldots, K_m , Φ can be approximated as

$$\Phi(\cdot) pprox \sum_{j=1}^m \Phi_{{oldsymbol{K}}_j}(\cdot).$$

Each component Φ_{K_j} is concentrated on the subregion given by the features of cluster K_j .

- Observed *i.i.d.* copies $z_1, \ldots, z_n \in \mathcal{Z}$ of random variable z
- Loss function $\ell : \mathcal{G} \times \mathcal{Z} \to \mathbb{R}$
- Goal is to minimize the unknown true risk $\mathcal{R}(g) = \mathbb{E}_{z}[\ell(g, z)]$
- Empirical counterpart, for all $g \in \mathcal{G}$,

$$\mathcal{R}(g) = \mathbb{E}_{z}[\ell(g,z)] \qquad \widehat{\mathcal{R}}_{n}(g) = \frac{1}{n} \sum_{i=1}^{n} \ell(g,z_{i}).$$

Examples: z = (x, y) with data $x \in \mathcal{X} \subset \mathbb{R}^p$ and label $y \in \mathcal{Y}$.

- (L_2 Regression) $\mathcal{Y} = \mathbb{R}$, $\ell(g, (x, y)) = (y g(x))^2$
- (Classification) $\mathcal{Y} = \{-1, +1\}, \qquad \ell(g, (x, y)) = \mathbb{1}\{g(x) \neq y\}$

ERM in Extreme Regions

- $n \ge 1$ *i.i.d* copies X_1, \ldots, X_n of X (Pareto margins)
- Loss function $\ell : \mathbb{R}^{p}_{+} \times \mathbb{R}_{+} \to \mathbb{R}_{+}$ measuring the discrepancy between the true extreme dependence structure of X and its prediction g(X).
- Find g to minimize the risk at level t_{γ}

$$\mathcal{R}_{t_{\gamma}}(g) = \mathbb{E}_{X}\left[\ell\left(X, g\left(X\right)\right) \Big| \|X\|_{\infty} > t_{\gamma}\right],$$

- $n \ge 1$ *i.i.d* copies X_1, \ldots, X_n of X (Pareto margins)
- Loss function $\ell : \mathbb{R}^{p}_{+} \times \mathbb{R}_{+} \to \mathbb{R}_{+}$ measuring the discrepancy between the true extreme dependence structure of X and its prediction g(X).
- Find g to minimize the risk at level t_γ

$$\mathcal{R}_{t_{\gamma}}(g) = \mathbb{E}_{X}\left[\ell\left(X, g\left(X\right)\right) \Big| \|X\|_{\infty} > t_{\gamma}
ight],$$

• Based on the extreme observations $X_{(1)}, \ldots, X_{(k)}$, the empirical risk is

$$\widehat{\mathcal{R}}_k(g) = \frac{1}{k} \sum_{i=1}^k \ell(X_{(i)}, g(X_{(i)})),$$

where $||X_{(1)}|| \ge \ldots \ge ||X_{(k)}|| \ge \ldots \ge ||X_{(n)}||$. • Denote $\mathbf{X} \in \mathbb{R}^{k \times p}_+$ the data matrix of extreme observations.

Representation g(X) and Loss function ℓ

• Approximate $||X||_1$ with mixtures of components of X

• Consider the probability simplex $\Delta_p = \{x \in \mathbb{R}^p_+, x_1 + \ldots + x_p = 1\}$ and let $\mathbf{W} \in \mathcal{A}_p^m$ with m < p be a *mixture matrix* (columns belonging to Δ_p).

• Each column \mathbf{W}^{j} for $j \in [\![1, m]\!]$ is modelling a mixture of components and represents a cluster K_{j} .

 $\ell(X,W) = \|X\|_1 - \vee_{j=1}^m X W^j$

Representation g(X) and Loss function ℓ

• Approximate $\|X\|_1$ with mixtures of components of X

• Consider the probability simplex $\Delta_p = \{x \in \mathbb{R}^p_+, x_1 + \ldots + x_p = 1\}$ and let $\mathbf{W} \in \mathcal{A}_p^m$ with m < p be a *mixture matrix* (columns belonging to Δ_p).

• Each column \mathbf{W}^{j} for $j \in [\![1, m]\!]$ is modelling a mixture of components and represents a cluster K_{j} .

$$\ell(X,W) = \|X\|_1 - \vee_{j=1}^m XW^j$$

Example: $p = 7, K_1 = \{1, 2\}, K_2 = \{3, 4, 5\}, K_3 = \{6, 7\}$ $\mathbf{X} = \begin{pmatrix} \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} & \mathbf{*} \end{pmatrix}, \quad \mathbf{W} = \begin{pmatrix} 1/2 & 0 & 0 \\ 1/2 & 0 & 0 \\ 0 & 0 & 1/3 \\ 0 & 0 & 1/3 \\ 0 & 0 & 1/3 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$

(Non-Convex) Optimization Problem

• For each row X_i , seek a column $j \in [\![1, m]\!]$ for which $\widetilde{X}^j = (X_i \mathbf{W})^j$ is the closest to $\|X_i\|_1$.

• Column index of a good mixture through the mapping

$$\varphi : \llbracket 1, k \rrbracket \to \llbracket 1, m \rrbracket, \quad \varphi(i) = \operatorname*{arg\,max}_{1 \leq j \leq m} \widetilde{X}^{j}_{(i)}$$

• Learn the mixture matrix $\widehat{\mathbf{W}}_k$ such that

$$\widehat{\mathbf{W}}_k \in rgmax_{\mathbf{W}\in\mathcal{A}_p^m} \left\{ rac{1}{k} \sum_{i=1}^k (\mathbf{X}\mathbf{W})_i^{arphi(i)} = rac{1}{k} \sum_{i=1}^k e_i(\mathbf{X}\mathbf{W}) e^{arphi(i)}
ight\}.$$

Warning computationally intractable (all combinations)

 \rightarrow Relaxed version of the problem !

Relaxed Version and Regularization

$$(\widehat{\mathbf{W}}_k, \widehat{\mathbf{Z}}_k) \in \operatorname*{arg\,max}_{(\mathbf{W}, \mathbf{Z}) \in \mathcal{A}_p^m \times \mathcal{A}_m^k} f(\mathbf{W}, \mathbf{Z}) = \frac{1}{k} \sum_{i=1}^{k} \mathbf{X}_i \mathbf{W} \mathbf{Z}^i = Tr(\mathbf{X} \mathbf{W} \mathbf{Z})/k.$$

$$(\widehat{\mathbf{W}}_k, \widehat{\mathbf{Z}}_k) \in \operatorname*{arg\,max}_{(\mathbf{W}, \mathbf{Z}) \in \mathcal{A}_p^m \times \mathcal{A}_m^k} f(\mathbf{W}, \mathbf{Z}) = \frac{1}{k} \sum_{i=1}^k \mathbf{X}_i \mathbf{W} \mathbf{Z}^i = Tr(\mathbf{X} \mathbf{W} \mathbf{Z})/k.$$

• Constraint of disjoint clusters by forcing the columns of the mixture matrix **W** to be orthogonal, *i.e.*, for all i < j, $\langle W^i, W^j \rangle = 0$.

• Penalized version of the objective function with a regularization parameter $\lambda > 0$:

$$f_{\lambda}(\mathbf{W}, \mathbf{Z}) = Tr(\mathbf{XWZ})/k - \lambda \sum_{i < j} \langle W^i, W^j \rangle$$

with partial derivatives given by

$$\begin{cases} \nabla_{\mathbf{Z}} f_{\lambda}(\mathbf{W}, \mathbf{Z}) &= (\mathbf{X}\mathbf{W})^{T} / k \\ \nabla_{\mathbf{W}} f_{\lambda}(\mathbf{W}, \mathbf{Z}) &= (\mathbf{Z}\mathbf{X})^{T} / k - \lambda \widetilde{\mathbf{W}}, \qquad \widetilde{W}^{j} = \sum_{i < j} W^{i}. \end{cases}$$

Projection onto Simplex

- \bullet Recover clusters that are not unit sets \rightarrow avoid the vertices.
- Projection step $\Pi_{\mathcal{S}}(\cdot)$ of each column of **W** onto a convex set \mathcal{S} .
- $\bar{x} = (1/p, \dots, 1/p)$ the barycenter of the probability simplex Δ_p .
- To escape from the curse of dimensionality, we introduce the convex set where we cut off the vertices using a threshold τ of the distance $L = \|\bar{x} e_j\|_2 = \sqrt{(p-1)/p}$ between the barycenter and a vertex.

$$\mathcal{S}_{\rho}^{\tau} = \left\{ x \in \Delta_{\rho} | \max_{1 \leq j \leq \rho} \langle x - \bar{x}, e_j - \bar{x} \rangle \leq \tau \| e_j - \bar{x} \|_2
ight\}.$$

Define the radius $r^p_\infty(au) = 1 - (1- au)(p-1)/p$ then

$$\mathcal{S}_{p}^{\tau} = \Delta_{p} \cap B_{\infty,p}\left(\bar{x},\tau L\right) = \Delta_{p} \cap B_{\infty,p}\left(0,r_{\infty}^{p}(\tau)\right).$$

Figure 1: Simplex of \mathbb{R}^3 with our region of interest.

Non-asymptotic bound

Consider the risk $\mathcal{R}_{t_{\gamma}}, k = \lfloor n\gamma \rfloor$ and denote by \mathbf{W}_{mex} the mixture matrix obtained by MEXICO. Then for $\delta \in (0, 1)$, $n \ge 1$ and $\tau \le 1$ we have with probability at least $1 - \delta$,

$$\mathcal{R}_{t_{\gamma}}(\mathsf{W}_{mex}) - \mathcal{R}_{t_{\gamma}}(\mathsf{W}_{t_{\gamma}}^{\star}) \leq \frac{1}{\sqrt{k}} C(\gamma, \delta) + \frac{1}{k} C'(\gamma, \delta) + C^{''}(\tau).$$

• Convergence rate of order $O_{\mathbb{P}}(1/\sqrt{k})$ where k is the actual size of the dataset required to estimate the support of extreme.

Numerical Experiments

Anomaly Detection

Predict if a new extreme sample $X_{\text{new}} \in \mathbb{R}^p_+$ is an anomaly, using the value of the loss function $\ell(X_{\text{new}}, \mathbf{W}_{\text{mex}})$ as an anomaly score.

- small loss $\rightarrow X_{new}$ behavior is rather *normal*
- large loss $\rightarrow X_{new}$ more likely to be an *anomaly*.

Numerical Experiments: Feature Clustering

Feature Clustering

A new extreme sample $X_{new} \in \mathbb{R}^p_+$ is to be analyzed.

• Since X_{new} is extreme \rightarrow predict the features that are large simultaneously based on the clusters given by MEXICO.

• Compute the transformed sample $\widetilde{X}_{new} = X_{new} \mathbf{W}_{mex}$ and assign the predicted cluster of features by $\operatorname{Pred}(X_{new}) = \arg \max_{1 \le j \le m} \widetilde{X}_{new}^j$.

Feature Clustering

Since MEXICO is an inductive clustering method, compare with spectral clustering Ding et al. (2005) and spherical K-means Janßen et al. (2020).

- Simulated data from an (asymmetric) logistic distribution.
- Parameter setting: dimension $p \in \{75, 100, 150, 200\}$, number of train samples $n_{\text{train}} = 1000$ and test samples $n_{\text{test}} = 100$.

Anomaly Detection

Comparison of three algorithms for anomaly detection in extreme regions: Isolation Forest (Liu et al., 2008), DAMEX (Goix et al., 2017) and our method MEXICO.

 \bullet Five reference AD datasets are studied: shuttle, forestcover, http, SF and SA.

Conclusion

- Optimization framework (ERM) for clustering features in extreme regions
- Our approach does not scan all the multiple possible subsets and outperforms existing algorithms
- Future work will focus on the statistical properties of the developed algorithm by further exploring links with kernel methods

• Our paper: https://arxiv.org/abs/2008.07365

• Thank You!

References

- Chautru, E. (2015). Dimension reduction in multivariate extreme value analysis. *Electronic journal of statistics* 9(1), 383–418.
- Chiapino, M. and A. Sabourin (2016). Feature clustering for extreme events analysis, with application to extreme stream-flow data. In *International Workshop on New Frontiers in Mining Complex Patterns*, pp. 132–147. Springer.
- Chiapino, M., A. Sabourin, and J. Segers (2019). Identifying groups of variables with the potential of being large simultaneously. *Extremes* 22(2), 193–222.
- Cooley, D. and E. Thibaud (2019). Decompositions of dependence for high-dimensional extremes. *Biometrika* 106(3), 587–604.
- Cutler, A. and L. Breiman (1994). Archetypal analysis. Technometrics 36(4), 338-347.
- De Haan, L. and A. Ferreira (2007). *Extreme value theory: an introduction*. Springer Science & Business Media.
- Ding, C., X. He, and H. D. Simon (2005). On the equivalence of nonnegative matrix factorization and spectral clustering. In *Proceedings of the 2005 SIAM international conference on data mining*, pp. 606–610. SIAM.
- Drees, H. and A. Sabourin (2019). Principal component analysis for multivariate extremes. *arXiv preprint arXiv:1906.11043*.
- Engelke, S. and A. S. Hitz (2018). Graphical models for extremes. *arXiv preprint arXiv:1812.01734*.
- Engelke, S. and J. Ivanovs (2020). Sparse structures for multivariate extremes. *arXiv* preprint arXiv:2004.12182.

- Goix, N., A. Sabourin, and S. Clémençon (2016). Sparse representation of multivariate extremes with applications to anomaly ranking. In *Artificial Intelligence and Statistics*, pp. 75–83.
- Goix, N., A. Sabourin, and S. Clémençon (2017). Sparse representation of multivariate extremes with applications to anomaly detection. *Journal of Multivariate Analysis 161*, 12–31.
- Janßen, A., P. Wan, et al. (2020). *k*-means clustering of extremes. *Electronic Journal* of *Statistics* 14(1), 1211–1233.
- Liu, F. T., K. M. Ting, and Z.-H. Zhou (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE.
- Meyer, N. and O. Wintenberger (2019). Sparse regular variation. arXiv preprint arXiv:1907.00686.
- Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer Series in Operations Research and Financial Engineering.
- Tipping, M. E. and C. M. Bishop (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622.
- Wold, S., K. Esbensen, and P. Geladi (1987). Principal component analysis. Chemometrics and intelligent laboratory systems 2(1-3), 37–52.