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INVENTORY MANAGEMENT

• GOAL:
Find the right balance between the supply and de-
mand of products by optimizing replenishment
decisions and minimizing costs.

• BENEFITS:
↪→ Better inventory accuracy
↪→ Insights to cost savings
↪→ Avoidance of stock-outs

• FRAMEWORK:
A controller observes the past demands and local
information of the inventory and has to decide
about the next ordering values.

• MAIN ISSUE: Environment uncertainty

↪→ demands and lead-times are stochastic with
potentially high volatility.

↪→ controller may exceedingly order, leading to
unnecessary ordering and holding costs.

↪→ controller may insufficiently order, leading to
shortage costs and may jeopardize the company’s
performance.

CONTRIBUTIONS

(1) We develop a novel reinforcement learning frame-
work, called MARLIM, to address the inventory man-
agement problem for a single-echelon multi-products
supply chain on a production line with stochastic de-
mands and lead-times.

(2) We provide the methodology to train agents in dif-
ferent scenarios for fixed or shared capacity constraints
with specific handling of storage overflows.

(3) We perform various numerical experiments on real-

world data to demonstrate the benefits of our method

over classical baselines.

INVENTORY COSTS

For any item i ∈ N , denote by C
(i)
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unit ordering, holding and shortage costs respectively.

(a) Ordering costs: functioning costs, reception costs,
salaries personnel, labor costs, rent of a factory, energy
consumption allocated for production.

(b) Holding costs: financial and functional costs, rent
and maintenance of required space, insurance costs,
transportation and obsolescence costs.

(c) Shortage costs: demand exceeds available inventory
↪→ backlogging costs and penalty shortage cost.

INVENTORY DYNAMICS

At time t, for each product i = 1, . . . , n, inventory con-
troller decides about the order a(i)

t to take based on the
current inventory level x(i)
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t . Order arrives after stochastic lead-time τ
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t .
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where αo, αh, αs ∈ [0, 1] with αo + αh + αs = 1

are weighting coefficients that translate some expert’s
knowledge about the desired strategy.

INVENTORY FEATURES

• The inventory costs of each agent are associated to
the single reward defined as: ri(st, at) = −Ci

t . Inside
a product subspace Nk, the agents are working in a
cooperative setting in order to optimize the average
reward rk(st, at) =

∑
i∈Nk

ri(st, at)/|Nk|.

• warehouse with n independent products (one agent

per item). capacity of each product is either: (1) finite

and non-variable for each product (single agents) or (2)

shared with finite capacity in cluster (multi-agents RL).

• stochastic demands and lead-times (e.g. Poisson, Geo-

metric) with stationary distributions that may be infered

from historical data.

NUMERICAL DETAILS

• Lead-time geometric τ (i) ∼ G(pi).
• Demand δ(i) ∼ XiYi with Xi ∼ B(bi), Yi ∼ P(µi).

MinMax agents: a standard min-max strategy (s, S) from

operation research.

Oracle agents: order at each time according to a normal

lawN (µ̂δ, σ̂
2
δ ) which is clamped to fit the bounds of the

action space.

MARL agents: PPO algorithm, when working with ca-

pacity constraints per item, both discrete and contin-

uous policies are considered, denoted by PPO-D and

PPO-C respectively. When the items compete for stor-

age space, we implement IPPO.

NUMERICAL RESULTS

Figure 1: Inventory level (blue) over T = 120 months: MinMax (left), Oracle (center), PPO (right). The demand is plotted in red
and the order actions are plotted in green. The safety stock MinMax agent is displayed in orange.
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Figure 2: Learning curves of clusters N1,N2 and N3 where the mean and standard deviation of IPPO are plotted in blue and the
horizontal lines are average reward for baselines Oracle (green) and MinMax (red) computed over 100 replications.
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Figure 3: Average Cumulative Costs and Item Shortages obtained over 100 replications, horizon T = 240 months for Items 0-9.


