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SLICED-WASSERSTEIN DISTANCE (SW)
For probability measures µ, ν ∈ Pp(Rd),

SWp
p(µ, ν,P) =

∫
Sd−1

Wp
p(θ

⋆
♯µ, θ

⋆
♯ ν) dP(θ)

P ∼ U(Sd−1), integrand f
(p)
µ,ν : Sd−1 → R,

f (p)
µ,ν(θ) = Wp

p(θ
⋆
♯µ, θ

⋆
♯ ν)

Monte Carlo: Sample θi ∼ P and average (f
(p)
µ,ν(θi))i.

GOAL: Improve SW distance computation by improv-

ing the MC estimation using Control Variates.

CONTROL VARIATES AND OLSMC
Integral I(f) of square-integrable integrand f ∈ L2(P)

on (Θ,F ,P) is approximated with θ1, . . . , θn ∼ P

I(f) =

∫
Θ

f(θ)dP(θ), In(f) =
1

n

n∑
i=1

f(θi).

φ = (φ1, . . . , φs)
⊤ are Control Variates: I(φk) = 0

For β ∈ Rs, I(f − β⊤φ) = I(f) yielding CV estimate

I(cv)n (f, β) =
1

n

n∑
i=1

(f(θi)− β⊤φ(θi)).

OLS framework: I(f) is the intercept of the LR model
with features φ1, . . . , φs and target response f ,

(I(f), β⋆(f)) ∈ argmin
(α,β)∈R×Rs

I[(f − α− β⊤φ)2].

• Ordinary Least Squares Monte Carlo (OLSMC)

(Iolsn (f), βn(f)) ∈ argmin
(α,β)∈R×Rs

∥fn − α1n − Φβ∥22

fn = (f(θ1), . . . , f(θn))
⊤ ∈ Rn, 1n = (1, . . . , 1)⊤ ∈ Rn,

Φ ∈ Rn×s is matrix of control variates Φ = (φ(θi)
⊤)ni=1.

Figure 1: L2(P) projection of f onto Span{φ1, . . . , φs}.

SPHERICAL HARMONICS

The Spherical Harmonics {φℓ,k : ℓ ≥ 0, 1 ≤ k ≤ Nd
ℓ }

form an orthonormal basis of the Hilbert space L2(Sd−1)

so that for every f ∈ L2(Sd−1) we have

f =

∞∑
ℓ=0

Nd
ℓ∑

k=1

f̂ℓ,kφℓ,k where f̂ℓ,k =

∫
fφℓ,k dP .

I(φℓ,k) =

∫
Sd−1

φℓ,k(θ) dP(θ) = 0

SHCV ESTIMATOR

The SHCV estimate of maximum degree 2L is the

OLSMC estimate with all spherical harmonics of even

degree from 2 up to 2L as covariate matrix

SHCVp
n,L(µ, ν) = Iolsn (f (p)

µ,ν)

(Linear rule) SHCV estimate can be represented as a
linear rule w⊤fn, where the weight vector w ∈ Rn does
not depend on the integrands.

(Computing time) For K integrals, SHCV in

O(Knωf + ω(Φ)) compared to O(Knωf ) for MC.

SLICED-WASSERSTEIN ALGORITHMS

Algorithm 1: Sliced Wasserstein Monte Carlo

Require: µ, ν ∈ Pp(Rd), number of random projections n

1: Sample random projections θ1, . . . , θn ∼ P

2: Compute fn = (f
(p)
µ,ν(θi))

n
i=1

3: Return average MCn = (1n/n)
⊤fn

Algorithm 2: Spherical Harmonics Control Variate

Require: µ, ν ∈ Pp(Rd), number of random projections n,

spherical harmonics φ = (φj)
s
j=1

1: Sample random projections θ1, . . . , θn ∼ P

2: Compute fn = (f
(p)
µ,ν(θi))

n
i=1, Φ = (φ(θi)

⊤)ni=1

3: Solve (Iolsn , βn) ∈ argminα,β ∥fn − α1n − Φβ∥22
4: Return SHCVn = Iolsn

THEORETICAL PROPERTIES

For Gaussians µ = N (a,A) and ν = N (b,B)

f (2)
µ,ν(θ) = |θ⊤(a− b)|2 +

(√
θ⊤Aθ −

√
θ⊤Bθ

)2
(Exact Rule) If f (p)

µ,ν is a polynomial of degree m, con-
sidering the SHCV estimate and control variates φ =

(φj)
sL,d

j=1 , if 2L ≥ m and n > sL,d then SHCV is exact:
SHCVp

n,L(µ, ν) = SWp
p(µ, ν).

(Affine transform) If µ, ν ∈ P2(Rd) are related by
X ∼ µ and αX + b ∼ ν where α ∈ (0,∞) and b ∈ Rd

then the SHCV estimate is exact.

(Mean invariance) For µ, ν ∈ P2(Rd), the error of the
SHCV method is (exactly) invariant under changes of
the mean vectors mµ and mν of µ and ν respectively.

ASYMPTOTIC ERROR BOUND

Theorem 1 (Convergence rate). Let d ≥ 2, p ∈ [1,∞)

and µ, ν ∈ Pp(Rd) be fixed. For any degree sequence L =

Ln such that L = o(n1/(2(d−1))) as n → ∞, the integration

error satisfies∣∣∣SHCVp
n,L(µ, ν)− SWp

p(µ, ν)
∣∣∣ = OP(L

−1n−1/2)

• For d = 3, with L = n1/(2(d−1))/ℓn where ℓn → ∞
slowly, this yields the rate n−3/4+o(1) for the SHCV esti-

mate, in comparison to the Monte Carlo rate n−1/2.

RELATED METHODS

• MC: standard MC estimate.
• CVlow and CVup: the lower-CV and upper-CV esti-
mates of [3] based on lower and upper bounds of a
Gaussian approximation.
• CVNN: estimate of [1] based on nearest neighbors
estimates acting as control variates.
• RQMC: (Randomized) Quasi Monte Carlo as in [2].

• SHCV: proposed estimate with Spherical Harmonics

as Control Variates.

NUMERICAL EXPERIMENTS

(Gaussian) SW2
2(µm, νm) with µm = m−1 ∑m

i=1 δxi

and νm = m−1 ∑m
j=1 δyj , xi ∼ µ = N (a,A), yj ∼ ν =

N (b,B), m = 1000, means a, b ∼ Nd(1d, Id) and co-
variance A = ΣaΣ

⊤
a and B = ΣbΣ

⊤
b , entries of Σa,Σb

drawn from N (0, 1).
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Figure 2: MSE for sampled Gaussian distributions supported
on m = 1000 points, dimension d ∈ {3; 6} (left/right).

(3D Point Clouds) dataset ShapeNetCore correspond-
ing to the objects plane, lamp, and bed, each composed
of m = 2048 points in R3.
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Figure 3: Boxplots of error ŜWn(µm, νm)−SW(µm, νm) for
different SW estimates based on n random projections with n ∈
{100; 250; 500; 1000} obtained over 100 independent runs.
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