

DESCRIPTION

Sliced-Wasserstein Estimation with Spherical Harmonics as Control Variates

Aymeric Dieuleveut¹ François Portier² Johan Segers³ Aigerim Zhuman³ ¹CMAP, École Polytechnique, IPParis ²CREST, ENSAI ³LIDAM, ISBA, UCLouvain

SLICED-WASSERSTEIN DISTANCE (SW)

For probability measures $\mu,\nu\in \mathcal{P}_p(\mathbb{R}^d)$,

$$
\mathrm{SW}_p^p(\mu,\nu,\mathrm{P}) = \int_{\mathbb{S}^{d-1}} \mathrm{W}_p^p(\theta_\sharp^\star \mu, \theta_\sharp^\star \nu) \,\mathrm{d}\, \mathrm{P}(\theta)
$$

$$
P \sim \mathcal{U}(\mathbb{S}^{d-1}), \text{integrand } f_{\mu,\nu}^{(p)} : \mathbb{S}^{d-1} \to \mathbb{R},
$$

$$
f_{\mu,\nu}^{(p)}(\theta) = W_p^p(\theta_{\sharp}^{\star} \mu, \theta_{\sharp}^{\star} \nu)
$$

Monte Carlo: Sample $\theta_i \sim P$ and average $(f_{\mu,\nu}^{(p)}(\theta_i))_i$.

GOAL: Improve SW distance computation by improving the MC estimation using **Control Variates**.

 $(I_n^{\text{ols}}(f), \beta_n(f)) \in \argmin_{\beta \in \mathbb{R} \setminus \{1\}}$ (α,β) ∈R×R^s $||f_n - \alpha 1_n - \Phi \beta||_2^2$ 2

 $f_n = (f(\theta_1), ..., f(\theta_n))^{\top} \in \mathbb{R}^n$, $1_n = (1, ..., 1)^{\top} \in \mathbb{R}^n$, $\Phi \in \mathbb{R}^{n \times s}$ is matrix of control variates $\Phi = (\varphi(\theta_i)^{\top})_{i=1}^n$.

Figure 1: $L_2(P)$ projection of f onto $Span\{\varphi_1, \ldots, \varphi_s\}$.

CONTROL VARIATES AND OLSMC

Integral I(f) of square-integrable integrand $f \in L_2(P)$ on (Θ, \mathcal{F}, P) is approximated with $\theta_1, \ldots, \theta_n \sim P$

$$
I(f) = \int_{\Theta} f(\theta) dP(\theta), \quad I_n(f) = \frac{1}{n} \sum_{i=1}^n f(\theta_i).
$$

 $\varphi = (\varphi_1, \ldots, \varphi_s)^\top$ are **Control Variates**: $I(\varphi_k) = 0$ For $\beta \in \mathbb{R}^s$, I $(f - \beta^\top \varphi) = \mathrm{I}(f)$ yielding CV estimate

$$
\mathrm{I}_n^{(\text{cv})}(f,\beta) = \frac{1}{n} \sum_{i=1}^n (f(\theta_i) - \beta^\top \varphi(\theta_i)).
$$

OLS framework: $I(f)$ is the intercept of the LR model with features $\varphi_1, \ldots, \varphi_s$ and target response f ,

> $(I(f), \beta_*(f)) \in \argmin_{\alpha \in \mathbb{R} \setminus \{f\}}$ (α,β) ∈R×R^s $\mathrm{I}[(f - \alpha - \beta^\top \varphi)^2].$

(**Computing time**) For K integrals, SHCV in $\mathcal{O}(Kn\omega_f + \omega(\Phi))$ compared to $\mathcal{O}(Kn\omega_f)$ for MC.

• **Ordinary Least Squares** Monte Carlo (OLSMC)

SPHERICAL HARMONICS

The ${\bf Spherical~Harmonics}~\{\varphi_{\ell,k}:\ell\geq0, 1\leq k\leq N^d_\ell\}$ $\left\{ \begin{array}{c} 1 \end{array} \right\}$ form an orthonormal basis of the Hilbert space $L_2(\mathbb{S}^{d-1})$ so that for every $f\in L_2(\mathbb{S}^{d-1})$ we have

> (**Affine transform**) If $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ are related by $X \sim \mu$ and $\alpha X + b \sim \nu$ where $\alpha \in (0,\infty)$ and $b \in \mathbb{R}^d$ then the SHCV estimate is exact.

> (**Mean invariance**) For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, the error of the SHCV method is (exactly) invariant under changes of the mean vectors m_{μ} and m_{ν} of μ and ν respectively.

 $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$

$$
f = \sum_{\ell=0}^{\infty} \sum_{k=1}^{N_{\ell}^{d}} \hat{f}_{\ell,k} \varphi_{\ell,k} \quad \text{where} \quad \hat{f}_{\ell,k} = \int f \varphi_{\ell,k} dP.
$$

$$
\mathrm{I}(\varphi_{\ell,k})=\int_{\mathbb{S}^{d-1}}\varphi_{\ell,k}(\theta)\,\mathrm{d}\,\mathrm{P}(\theta)=0
$$

SHCV ESTIMATOR

Theorem 1 (Convergence rate). Let $d \geq 2$, $p \in [1, \infty)$ and $\mu,\nu\in \mathcal{P}_p(\mathbb{R}^d)$ be fixed. For any degree sequence $L=$ L_n such that $L = o(n^{1/(2(d-1))})$ as $n \to \infty$, the integration *error satisfies*

The SHCV estimate of maximum degree 2L is the OLSMC estimate with all spherical harmonics of even degree from 2 up to 2L as covariate matrix

$$
\text{SHCV}^p_{n,L}(\mu,\nu) = \mathcal{I}^{\text{ols}}_n(f^{(p)}_{\mu,\nu})
$$

• CV_{low} and CV_{up} : the lower-CV and upper-CV estimates of [3] based on lower and upper bounds of a Gaussian approximation.

(**Linear rule**) SHCV estimate can be represented as a linear rule $w^\top f_n$, where the weight vector $w \in \mathbb{R}^n$ **does not depend on the integrands**.

> • CVNN: estimate of [1] based on nearest neighbors estimates acting as control variates.

SLICED-WASSERSTEIN ALGORITHMS

Algorithm 1: Sliced Wasserstein Monte Carlo

Require: $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^d)$, number of random projections n

- 1: Sample random projections $\theta_1,\ldots,\theta_n\sim\mathrm{P}$
- 2: Compute $f_n=(f^{(p)}_{\mu,\nu}(\theta_i))_{i=1}^n$ $i=1$
- 3: Return average M $\textsf{C}_n = (1_n/n)^\top f_n$

Figure 2: MSE for sampled Gaussian distributions supported on $m = 1000$ points, dimension $d \in \{3, 6\}$ (left/right).

(3D Point Clouds) dataset ShapeNetCore corresponding to the objects plane, lamp, and bed, each composed of $m=2048$ points in \mathbb{R}^3 .

Algorithm 2: Spherical Harmonics Control Variate

Require: $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^d)$, number of random projections n , spherical harmonics $\varphi = (\varphi_j)_j^s$ $j=1$

- 1: Sample random projections $\theta_1, \ldots, \theta_n \sim P$
- 2: Compute $f_n=(f_{\mu,\nu}^{(p)}(\theta_i))_{i=1}^n$, $\Phi=(\varphi(\theta_i)^{\top})_{i=1}^n$ $i=1$
- 3: Solve $(I_n^{\text{ols}}, \beta_n) \in \argmin_{\alpha, \beta} ||f_n \alpha 1_n \Phi \beta||_2^2$ 2
- 4: Return SHCV $_n = \mathrm{I}_n^{\text{ols}}$ \boldsymbol{n}

 $f_{\mu,\nu}^{(2)}$

(**Exact Rule**) If $f_{\mu,\nu}^{(p)}$ is a polynomial of degree m, considering the SHCV estimate and control variates $\varphi =$ (φ_j) s L,d $_{j=1}^{s_{L,d}}$, if $2L\geq m$ and $n>s_{L,d}$ then SHCV is exact: $\text{SHCV}_{n,L}^p(\mu, \nu) = \text{SW}_p^p(\mu, \nu).$

THEORETICAL PROPERTIES

For Gaussians $\mu = \mathcal{N}(a, \mathbf{A})$ and $\nu = \mathcal{N}(b, \mathbf{B})$

 $\hat{f}_{\mu,\nu}^{(2)}(\theta)=|\theta^\top(a-b)|^2+\big($ √ $\theta^\top \mathbf{A} \theta$ – √ $\overline{\theta^{\top}\mathbf{B}\theta})^2$

ASYMPTOTIC ERROR BOUND

$$
\left| \text{SHCV}_{n,L}^p(\mu,\nu) - \text{SW}_p^p(\mu,\nu) \right| = \mathcal{O}_{\mathbb{P}}(L^{-1}n^{-1/2})
$$

• For $d = 3$, with $L = n^{1/(2(d-1))}/\ell_n$ where $\ell_n \to \infty$ slowly, this yields the rate $n^{-3/4+o(1)}$ for the SHCV estimate, in comparison to the Monte Carlo rate $n^{-1/2}$.

RELATED METHODS

• MC: standard MC estimate.

• RQMC: (Randomized) Quasi Monte Carlo as in [2]. • SHCV: proposed estimate with Spherical Harmonics as Control Variates.

and $\nu_m = m^{-1} \sum_{i=1}^m$ variance $\mathbf{A} = \Sigma_a \Sigma_a^\top$ drawn from $\mathcal{N}(0, 1)$.

NUMERICAL EXPERIMENTS

(Gaussian) SW²₂(μ _m, ν _m) with μ _m = $m^{-1} \sum_{i=1}^{m}$ $\frac{m}{i=1} \, \delta x_i$ $\sum_{j=1}^m \delta_{y_j}$, $x_i \sim \mu = \mathcal{N}(a, \mathbf{A}), y_j \sim \nu = 0$ $\mathcal{N}(b, \mathbf{B})$, $m = 1000$, means $a, b \sim \mathcal{N}_d(1_d, I_d)$ and co a^{\top} and $\mathbf{B} = \Sigma_b \Sigma_b^{\top}$ $_b^\perp$, entries of Σ_a, Σ_b

-
-
-

Louvain Institute of Data Analysis and International Conference Modeling in economics and statistics

Figure 3: Boxplots of error SW い VV
1 $n(\mu_m, \nu_m) - \text{SW}(\mu_m, \nu_m)$ for different SW estimates based on n random projections with $n \in \mathbb{Z}$ {100; 250; 500; 1000} obtained over 100 independent runs.

REFERENCES

[1] R. Leluc, F. Portier, J. Segers, and A. Zhuman. Speeding up Monte Carlo integration: Control neighbors for optimal convergence. *Bernoulli*, 2024.

[2] K. Nguyen, N. Bariletto, and N. Ho. Quasi-Monte Carlo for 3D Sliced Wasserstein. In *The Twelfth International Conference on Learning Representations*, 2024.

[3] K. Nguyen and N. Ho. Sliced Wasserstein Estimation with Control Variates. In *The Twelfth International Conference on Learning Representations*, 2024.