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SLICED-WASSERSTEIN DISTANCE (SW)

For probability measures p, v € Pp(Rd),

SWP(u, v, P) / W2 (051, 05v) dP(0)

P ~ U(S* 1), integrand f(p) St 5 R,
fi(0) = Wi (0, 6;v)

Monte Carlo: Sample 8; ~ P and average (f, (p ) 2 (0:))q.

GOAL: Improve SW distance computation by improv-

ing the MC estimation using Control Variates.

CONTROL VARIATES AND OLSMC

Integral I( f) of square-integrable integrand f € L2 (P)

on (O, F,P) is approximated with 61,...,0,, ~ P

/f APO), Tu(f) = > F(6))

¢ = (p1,...,p05) are Control Variates: I(¢}) = 0
For B € R%, I(f — B ' ¢) = I(f) yielding CV estimate
) (f 3 = LS F0:) - 8T o0,
LY (f.8) = — ;uw» B e(0:)).

OLS framework: I( f) is the intercept of the LR model

with features ¢1, ..., ¢ and target response f,

(I(f), B«(f)) € argmin I[(f —a— 8" ¢)°].

(a,B)€ERXRS

® Ordinary Least Squares Monte Carlo (OLSMC)

(I5°(f), Bn(f)) € argmin | fn — al, — &3
(a,8)ERXRS
fo=(f01),...,f(6.)" eR", 1, =(1,...,1)" € R",

® € R™** is matrix of control variates ® = (¢(0;) ' ).
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) projection of f onto Span{ei,...

0 >0,1 < k<N
form an orthonormal basis of the Hilbert space L2 (S~ 1)
so that for every f € L2(S*" ') we have

The Spherical Harmonics { /&
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S = S‘S‘fékSOEk where fek—/fwde

¢=0 k=1

lpes) = | pun(6)dP(o) =0

SHCV ESTIMATOR

The SHCV estimate of maximum degree 2L is the
OLSMC estimate with all spherical harmonics of even

degree from 2 up to 2L as covariate matrix

]
SHCVn L(:u7 ) — I%S(f({?g)
(Linear rule) SHCV estimate can be represented as a

linear rule w' f,,, where the weight vector w € R" does
not depend on the integrands.
SHCV in

(Computing time) For K integrals,

O(Knw¢ 4+ w(®)) compared to O(Knwy) for MC.

SLICED-WASSERSTEIN ALGORITHMS

Algorithm 1: Sliced Wasserstein Monte Carlo

Require: u,v € Pp(R?), number of random projections n

1: Sample random projections ¢1,...,0, ~ P
2: Compute f, = (f5 (p) £(0:))i=1

3: Return average MCn = (1n/n) ' f

Algorithm 2: Spherical Harmonics Control Variate

Require: u,v € P,(R%), number of random projections n,
spherical harmonics ¢ = (¢;) 1
1: Sample random projections 61, ...,0, ~ P
2: Compute f,, = (f, LYONy, @ = (p(0;) ),
3: Solve (I2®, B8,,) € argming 3 ||fn — al, — @83
4: Return SHCV,, = 1ok

For Gaussians ¢ = N(a,A) and v =

F260) =167 (a— )P + (VOTAG — VoTBG)’

(Exact Rule) If fi") is a polynomial of degree m, con-
sidering the SHCV estimate and control variates ¢ =
(gpj)led, if 2L > m and n > s 4 then SHCV is exact:
SHCV?, | (1, v) = SWE (11, ).

(Affine transform) If u,v € P2(R?) are related by
X ~ pand aX 4+ b ~ vwhere o € (0,00) and b € R?
then the SHCV estimate is exact.

(Mean invariance) For i, v € P2(R%), the error of the

SHCV method is (exactly) invariant under changes of

the mean vectors m,, and m, of i and v respectively.

ASYMPTOTIC ERROR BOUND

Theorem 1 (Convergence rate). Letd > 2, p € [1,00)
and p,v € P,(R?) be fixed. For any degree sequence L =
Ly, such that L = o(n*/?4=1Y)) g5 n — oo, the integration

error satisfies

|SHCVnL(u, v) — SWE(u,v)| = Op(L~'n~"/?)

e For d = 3, with L = n'/®*=1) /y where £, — o0
slowly, this yields the rate n~3/*+°(1) for the SHCV esti-

mate, in comparison to the Monte Carlo rate n~ /2.

e MC: standard MC estimate.

* CVipw and CV,,,: the lower-CV and upper-CV esti-
mates of [3] based on lower and upper bounds of a
Gaussian approximation.

e CVNN: estimate of [1] based on nearest neighbors

estimates acting as control variates.
e ROMC: (Randomized) Quasi Monte Carlo as in [2].

e SHCV: proposed estimate with Spherical Harmonics

as Control Variates.

RELATED METHODS

(Gaussian) SW35(um, Vm) with pt, = _
and vy, = m™ YL 6y, w ~ p= Na, A) Yj ~ V=
N(b,B), m = 1()()(), means a,b ~ Ny(14,14) and co-
variance A = ¥,¥.) and B = X, %, , entries of &,, 3,

drawn from A (0, 1).

] —e— MC —#— SHCV

§ —+ CVNN =% CVlew —A— RQMC
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Figure 2: MSE for sampled Gaussian distributions supported
on m = 1000 points, dimension d € {3;6} (left/right).

(3D Point Clouds) dataset ShapeNetCore correspond-
ing to the objects plane, lamp, and bed, each composed
of m = 2048 points in R”.
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Figure 3: Boxplots of error S/\\/Vn (o, Vm ) — SW (i, Vm ) for
different SW estimates based on n random projections withn &
{100; 250; 500; 1000} obtained over 100 independent runs.
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